Stanford 2011

Calculus Level 4

Evaluate the sum

n = 1 7 n + 32 n ( n + 2 ) ( 3 4 ) n \sum_{n=1}^\infty \frac{7n + 32}{n(n+2)}\left(\frac 34\right)^n


The answer is 16.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

S = n = 1 7 n + 32 n ( n + 2 ) ( 3 4 ) n = n = 1 ( 7 n + 18 n ( n + 2 ) ) ( 3 4 ) n = n = 1 ( 7 n + 9 ( 1 n 1 n + 2 ) ) ( 3 4 ) n = n = 1 ( 16 n ( 3 4 ) n 9 n + 2 ( 3 4 ) n ) = n = 1 ( 16 n ( 3 4 ) n 9 n + 2 × 16 9 × ( 3 4 ) n + 2 ) = 16 n = 1 ( 1 n ( 3 4 ) n 1 n + 2 ( 3 4 ) n + 2 ) = 16 ( n = 1 1 n ( 3 4 ) n n = 3 1 n ( 3 4 ) n ) = 16 ( 1 1 × 3 4 + 1 2 × 9 16 ) = 33 2 = 16.5 \begin{aligned} S & = \sum_{n=1}^\infty \frac {7n+32}{n(n+2)}\left(\frac 34\right)^n \\ & = \sum_{n=1}^\infty \left(\frac 7n + \frac {18}{n(n+2)}\right)\left(\frac 34\right)^n \\ & = \sum_{n=1}^\infty \left(\frac 7n + 9 \left(\frac 1n - \frac 1{n+2} \right)\right)\left(\frac 34\right)^n \\ & = \sum_{n=1}^\infty \left(\frac {16}n\left(\frac 34\right)^n - \frac 9{n+2} \left(\frac 34\right)^n \right) \\ & = \sum_{n=1}^\infty \left(\frac {16}n\left(\frac 34\right)^n - \frac 9{n+2} \times \frac {16}9 \times \left(\frac 34\right)^{n+2} \right) \\ & = 16 \sum_{n=1}^\infty \left(\frac 1n \left(\frac 34\right)^n - \frac 1{n+2} \left(\frac 34\right)^{n+2} \right) \\ & = 16 \left(\sum_{n=1}^\infty \frac 1n \left(\frac 34\right)^n - \sum_{n=3}^\infty \frac 1n \left(\frac 34\right)^n \right) \\ & = 16 \left(\frac 11\times \frac 34 + \frac 12 \times \frac 9{16} \right) \\ & = \frac {33}2 = \boxed{16.5} \end{aligned}

we can use 16ln4 -16ln4+33/2=16.5

Aly Ahmed - 1 year, 2 months ago
Hi Bye
Apr 5, 2020

Similar to another solution, but this can easily be done using partial fraction decomposition: 7 n + 32 n ( n + 2 ) = 16 n 9 n + 2 . \frac{7n+32}{n(n+2)}=\frac{16}n-\frac9{n+2}. Now, since 9 = ( 3 / 4 ) 2 16 , 9=(3/4)^2\cdot 16, we get n = 1 16 n ( 3 4 ) n 16 n + 2 ( 3 4 ) n + 2 \sum_{n=1}^\infty \frac{16}n\left(\frac34\right)^n-\frac{16}{n+2}\left(\frac34\right)^{n+2} and the answer follows.

Ron Gallagher
Apr 3, 2020

Using partial fractions, we find that the summand can be written as (16/n) (x^n) - (9/(n+2)) x^n, where x = 3/4. Now use the identity, for 0<x<1, - ln(1-x) = (sum(x^n)/n from n = 1 to n = infinity) (NOTE: This identity can be obtained by integrating the geometric series term by term). Most of the terms in the sum cancel, with the exception of 16 x + (16/2) x^2. Substitute x = 3/4 to find this to get the required result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...