Stanford Mathematics Tournament.

Calculus Level 4

0 π 2 d x ( sin x + cos x ) 4 \large \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { dx }{ {( \sqrt { \sin { x } } + \sqrt { \cos { x } }) }^{ 4 } } }

Evaluate the integral above to three decimal places.


The answer is 0.333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 31, 2018

I = 0 π 2 d x ( sin x + cos x ) 4 = 0 π 2 d x cos 2 x ( tan x + 1 ) 4 Let u = tan x d u = sec 2 x d x = 0 d u ( u + 1 ) 4 Let u = t 2 d u = 2 t d t = 0 2 t d t ( t + 1 ) 4 = 2 0 ( 1 ( t + 1 ) 3 1 ( t + 1 ) 4 ) d t = 2 [ 1 2 ( t + 1 ) 2 + 1 3 ( t + 1 ) 3 ] 0 = 1 3 0.333 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {dx}{(\sqrt{\sin x}+\sqrt{\cos x})^4} \\ & = \int_0^\frac \pi 2 \frac {dx}{\cos^2 x(\sqrt{\tan x}+1)^4} & \small \color{#3D99F6} \text{Let }u = \tan x \implies du = \sec^2 x \ dx \\ & = \int_0^\infty \frac {du}{(\sqrt u+1)^4} & \small \color{#3D99F6} \text{Let }u = t^2 \implies du = 2t \ dt \\ & = \int_0^\infty \frac {2t \ dt}{(t+1)^4} \\ & = 2 \int_0^\infty \left(\frac 1{(t+1)^3} - \frac 1{(t+1)^4}\right) dt \\ & = 2 \left[- \frac 1{2(t+1)^2} + \frac 1{3(t+1)^3}\right]_0^\infty \\ & = \frac 13 \approx \boxed{0.333} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...