Let be a positive integer .
In an star pyramid, find the measure of the angle between the slant height and the base that minimizes the lateral surface area when the volume is held constant.
Use two cases for odd and even.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Case 1: n is an odd positive integer ≥ 5 .
To find A s t a r :
m ∠ A O P = n π and by Inscribed Angle Theorem m ∠ E P F = 2 1 m ∠ E O F = 2 1 n 2 π = n π ⟹ m ∠ A P O = 2 n π
O C A C = tan ( n π ) ⟹ O C = tan ( n π ) A C and P C = tan ( 2 n π ) A C = r − O C = r − tan ( n π ) A C ⟹
A C = tan ( n π ) + tan ( 2 n π ) tan ( 2 n π ) tan ( n π ) r
⟹ A △ A O P = 2 1 ( tan ( n π ) + tan ( 2 n π ) tan ( 2 n π ) tan ( n π ) ) r 2
tan ( n π ) = 1 − tan 2 ( 2 n π ) 2 tan ( 2 n π ) ⟹ A △ A O P = 3 − tan 2 ( 2 n π ) tan ( 2 n π ) r 2
⟹ A s t a r = 3 − tan 2 ( 2 n π ) 2 n tan ( 2 n π ) r 2
Let f = 3 − tan 2 ( 2 n π ) 2 n tan ( 2 n π ) .
It will be shown that λ (slant angle) is independent f .
Using the above diagram:
E G 2 = 2 r 2 ( 1 − cos ( n 4 π ) = 4 sin 2 ( n 2 π ) r 2 ⟹ E G = 2 sin ( n 2 π ) r ⟹ O R = r 2 − r 2 sin 2 ( n 2 π ) = r cos ( n 2 π ) and R Q = h 2 + r 2 cos 2 ( n 2 π )
⟹ The lateral surface area A = n sin ( n 2 π ) r h 2 + r 2 cos 2 ( n 2 π )
The volume V = 3 1 f r 2 h = k ⟹ k = f r 2 3 k ⟹ A ( r ) = n sin ( n 2 π ) r 9 k 2 + f 2 cos 2 ( n 2 π ) r 6 ⟹ d r d A = ( n sin ( n 2 π ) ) r 2 9 k 2 + f 2 cos 2 ( n 2 π ) r 6 2 f 2 cos 2 ( n 2 π ) r 6 − 9 k 2 ⟹ r = ( 2 f cos ( n 2 π ) 3 k ) 3 1 ⟹ h = f 3 k ( 3 k 2 f cos ( n 2 π ) ) 3 2
Let λ be the measure of the angle between the slant height and the base.
⟹ tan ( λ ) = O R h = 2 ⟹ λ ≈ 5 4 . 7 3 5 6 .
Case 2: n is an even positive integer ≥ 6 .
m ∠ A O B = n π and by Inscribed Angle Theorem m ∠ Q B T = 2 1 m ∠ Q O T = 2 1 n 4 π = n 2 π ⟹ m ∠ A B O = n π ⟹ △ A O B is an isosceles triangle ⟹ B C = O C = 2 r ⟹ tan ( n π ) = r 2 h ∗ ⟹ h ∗ = 2 r tan ( n π ) ⟹ A △ A O B = 4 1 tan ( n π ) r 2 ⟹ A s t a r = 2 n tan ( n π ) r 2
Q T 2 = 2 r 2 ( 1 − cos ( n 4 π ) ) = 4 sin 2 ( n 2 π ) r 2 ⟹ Q T = 2 sin ( n 2 π ) r ⟹ a = cos ( n 2 π ) r
⟹ P M = h 2 + cos 2 ( n 2 π ) r 2 ⟹
The surface area A = n sin ( n 2 π ) r h 2 + cos 2 ( n 2 π ) r 2
The volume V = 6 n tan ( n π ) r 2 h = k ⟹ h = n tan ( n π ) r 2 6 k
Let f ∗ = n tan ( n π ) cos ( n 2 π )
⟹ A ( r ) = 2 cos 2 ( n π ) r 3 6 k 2 + f ∗ 2 r 6 ⟹
d r d A = r 2 3 6 k 2 + f ∗ 2 r 6 4 cos 2 ( n π ) ( f ∗ 2 r 6 − 1 8 k 2 ) = 0
⟹ r = ( f ∗ 3 2 k ) 3 1 ⟹ h = f ∗ 6 k cos ( n 2 π ) ( 3 2 k f ∗ ) 3 2
Let θ be the measure of the angle between the slant height and the base.
tan ( θ ) = a h = 2 ⟹ λ = θ = 5 4 . 7 3 5 6