Start Counting! Part-3

Algebra Level 4

Find the number of Quadratic polynomials, a x 2 + b x + c ax^2+bx+c which satisfy the following conditions:

  1. a , b , c a,b,c are distinct.

  2. a , b , c a,b,c belongs to { 1 , 2 , 3 , , 1999 } \{1,2,3,\ldots,1999 \} .

  3. x + 1 x+1 divides a x 2 + b x + c ax^2+bx+c .


The answer is 1996002.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maggie Miller
Aug 11, 2015

x + 1 x+1 divides a x 2 + b x + c ax^2+bx+c when a ( 1 ) 2 + b ( 1 ) + c = a b + c = 0 a(-1)^2+b(-1)+c=a-b+c=0 . Given a { 1 , 2 , , 1999 } a\in\{1,2,\ldots,1999\} , there are 1999 a 1999-a values of c c ( 1 , 2 , , 1999 a 1,2,\ldots,1999-a that yield 1 b 1999 1\le b\le 1999 . If a 1999 a a\le 1999-a (i.e. a < 1000 a<1000 ) then we must further rule out a a as a value for c c .

Therefore, the answer is

a = 1 999 ( 1998 a ) + a = 1000 1999 ( 1999 a ) = 999 1998 + 1000 1999 a = 1 1999 a \displaystyle\sum_{a=1}^{999}(1998-a)+\sum_{a=1000}^{1999}(1999-a)=999\cdot1998+1000\cdot 1999-\sum_{a=1}^{1999}a

= 999 1998 + 1000 1999 1 2 1999 2000 = 999 1998 = 1996002 \displaystyle=999\cdot1998+1000\cdot 1999-\frac{1}{2}1999\cdot2000=999\cdot1998=\boxed{1996002} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...