Starts and ends with integrals?

Calculus Level 3

Denote X X as X = lim n k = 1 n ( k 2 ln ( n ) ln ( n + k ) π x π v cos ( ln ( f ( u ) f ( v ) ) ) d u d v π x π v sin ( ln ( f ( u ) f ( v ) ) ) d u d v d x ) X=\lim \limits_{n\to\infty} \sum_{k=1}^n \left( \frac{k}2-\int_{\ln(n)}^{\ln(n+k)} \frac {\int_π^x \int_π^v \cos(\ln(f(u)f(v))) \,du \,dv} {\int_π^x \int_π^v \sin(\ln(f(u)f(v))) \,du \,dv} \,dx \right) where e x = π x cos ( ln ( f ( t ) ) ) d t π x sin ( ln ( f ( t ) ) ) d t e^x=\frac{\int_π^x \cos(\ln(f(t))) \,dt} {\int_π^x \sin(\ln(f(t))) \, dt}

Find 1 0 10 X \left \lfloor 10^{10} X \right \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 1534264097.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Peter Csorba
Feb 23, 2021

Let C ( x ) : = π x cos ( ln ( f ( t ) ) ) d t C(x):=\int\limits_{\pi}^{x}\cos(\ln(f(t)))\,\mbox{d} t and S ( x ) : = π x sin ( ln ( f ( t ) ) ) d t S(x):=\int\limits_{\pi}^{x}\sin(\ln(f(t)))\,\mbox{d} t . Now C ( x ) = cos ( ln ( f ( x ) ) ) C'(x)=\cos(\ln(f(x))) , S ( x ) = sin ( ln ( f ( t ) ) ) S'(x)=\sin(\ln(f(t))) and e x = C ( x ) S ( x ) e^x=\dfrac{C(x)}{S(x)} .

So π x π v cos ( ln ( f ( u ) f ( v ) ) ) d u d v = π x π v cos ( ln ( f ( u ) ) + ln ( f ( v ) ) ) d u d v = π x π v cos ( ln ( f ( u ) ) ) cos ( ln ( f ( v ) ) ) sin ( ln ( f ( u ) ) ) sin ( ln ( f ( v ) ) ) d u d v = π x cos ( ln ( f ( v ) ) ) π v cos ( ln ( f ( u ) ) ) d u d v π x sin ( ln ( f ( v ) ) ) π v sin ( ln ( f ( u ) ) ) d u d v = π x C ( v ) C ( v ) d v π x S ( v ) S ( v ) d v = C 2 ( x ) 2 S 2 ( x ) 2 \int\limits_{\pi}^{x} \int\limits_{\pi}^{v}\cos(\ln(f(u)f(v)))\,\mbox{d}u \mbox{d}v=\int\limits_{\pi}^{x} \int\limits_{\pi}^{v}\cos(\ln(f(u))+\ln(f(v)))\,\mbox{d}u \mbox{d}v=\int\limits_{\pi}^{x} \int\limits_{\pi}^{v}\cos(\ln(f(u)))\cdot\cos(\ln(f(v)))-\sin(\ln(f(u)))\cdot\sin(\ln(f(v)))\,\mbox{d}u \mbox{d}v=\int\limits_{\pi}^{x} \cos(\ln(f(v))) \int\limits_{\pi}^{v}\cos(\ln(f(u)))\,\mbox{d}u \mbox{d}v-\int\limits_{\pi}^{x} \sin(\ln(f(v))) \int\limits_{\pi}^{v} \sin(\ln(f(u)))\,\mbox{d}u \mbox{d}v=\int\limits_{\pi}^{x}C'(v)C(v)\,\mbox{d}v-\int\limits_{\pi}^{x} S'(v)S(v)\,\mbox{d}v=\dfrac{C^2(x)}{2}-\dfrac{S^2(x)}{2} and

π x π v sin ( ln ( f ( u ) f ( v ) ) ) d u d v = π x π v sin ( ln ( f ( u ) ) + ln ( f ( v ) ) ) d u d v = π x π v cos ( ln ( f ( v ) ) ) sin ( ln ( f ( u ) ) ) + sin ( ln ( f ( v ) ) ) cos ( ln ( f ( u ) ) ) d u d v = π x cos ( ln ( f ( v ) ) ) π v sin ( ln ( f ( u ) ) ) d u d v + π x sin ( ln ( f ( v ) ) ) π v cos ( ln ( f ( u ) ) ) d u d v = π x C ( v ) S ( v ) + S ( v ) C ( v ) d v = C ( x ) S ( x ) \int\limits_{\pi}^{x} \int\limits_{\pi}^{v}\sin(\ln(f(u)f(v)))\,\mbox{d}u \mbox{d}v=\int\limits_{\pi}^{x} \int\limits_{\pi}^{v}\sin(\ln(f(u))+\ln(f(v)))\,\mbox{d}u \mbox{d}v=\int\limits_{\pi}^{x} \int\limits_{\pi}^{v}\cos(\ln(f(v)))\cdot\sin(\ln(f(u)))+\sin(\ln(f(v)))\cdot\cos(\ln(f(u)))\,\mbox{d}u \mbox{d}v=\int\limits_{\pi}^{x} \cos(\ln(f(v))) \int\limits_{\pi}^{v}\sin(\ln(f(u)))\,\mbox{d}u \mbox{d}v+\int\limits_{\pi}^{x} \sin(\ln(f(v))) \int\limits_{\pi}^{v} \cos(\ln(f(u)))\,\mbox{d}u \mbox{d}v=\int\limits_{\pi}^{x}C'(v)S(v)+S'(v)C(v)\,\mbox{d}v=C(x)S(x) .

Now X = lim n k = 1 n ( k 2 ln ( n ) ln ( n + k ) C 2 ( x ) S 2 ( x ) 2 C ( x ) S ( x ) d x ) = lim n k = 1 n ( k 2 ln ( n ) ln ( n + k ) e x e x 2 d x ) = lim n k = 1 n ( k 2 [ e x + e x 2 ] ln ( n ) ln ( n + k ) ) = lim n k = 1 n ( k 2 n + k + 1 n + k n 1 n 2 ) = lim n k = 1 n ( k 2 k + 1 n + k 1 n 2 ) = lim n k = 1 n 1 n 1 n + k 2 = lim n 1 ( 1 n + 1 + 1 n + 2 + + 1 2 n ) 2 = lim n 1 H 2 n + H n 2 = lim n 1 ln ( 2 n ) c + ln ( n ) + c 2 = 1 ln 2 2 = 0. 1534264097 2 X=\lim\limits_{n\to\infty} \sum\limits_{k=1}^n \left(\dfrac{k}2-\int\limits_{\ln(n)}^{\ln(n+k)} \dfrac{C^2(x)-S^2(x)}{2C(x)S(x)}\mbox{d}x\right)=\lim\limits_{n\to\infty} \sum\limits_{k=1}^n \left(\dfrac{k}2-\int\limits_{\ln(n)}^{\ln(n+k)} \dfrac{e^x-e^{-x}}{2}\mbox{d}x\right)=\lim\limits_{n\to\infty} \sum\limits_{k=1}^n \left(\dfrac{k}2-\left[\dfrac{e^x+e^{-x}}{2}\right]_{\ln(n)}^{\ln(n+k)} \right)=\lim\limits_{n\to\infty} \sum\limits_{k=1}^n \left(\dfrac{k}2-\dfrac{n{+}k+\frac{1}{n+k}-n-\frac{1}{n}}{2}\right)=\lim\limits_{n\to\infty} \sum\limits_{k=1}^n \left(\dfrac{k}2-\dfrac{k+\frac{1}{n+k}-\frac{1}{n}}{2}\right)=\lim\limits_{n\to\infty} \sum\limits_{k=1}^n \dfrac{\frac{1}{n}-\frac{1}{n+k}}{2}=\lim\limits_{n\to\infty} \dfrac{1-\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}\right)}{2}=\lim\limits_{n\to\infty} \dfrac{1-H_{2n}+H_n}{2}=\lim\limits_{n\to\infty} \dfrac{1-\ln(2n)-c+\ln(n)+c}{2}=\dfrac{1-\ln 2}{2}=0.\boxed{1534264097}2\ldots , where H n = k = 1 n 1 k H_n=\sum\limits_{k=1}^{n}\frac1k .​

Inquisitor Math
Feb 17, 2021

ANSWER: X = 1 2 0 1 x + 1 x d x = 1 ln 2 2 X= \frac12 \int_0^1 \frac{x+1}{x} \, dx= \frac{1-\ln{2}}2

can you showsome work?

Pi Han Goh - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...