Staying Positive

100 ! 99 ! × 5 ! 100! - 99! \times 5! is:

Less than 0 Equal to 0 Greater than 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Jan 7, 2017

Using the properties of factorials, we know that ( n + 1 ) ! n ! = n + 1 \dfrac{(n+1)!}{n!} = n+1 for positive integer n n . So,

100 ! 99 ! = 100 100 ! 99 ! × 5 ! = 100 5 ! = 100 120 < 1 100 ! < 99 ! × 5 ! 100 ! 99 ! × 5 ! < 0. \begin{aligned} \dfrac{100!}{99!} &=& 100 \\ \dfrac{100!}{99!\times 5!} &= &\dfrac{100}{5!} = \dfrac{100}{120} < 1 \\ 100! &< & 99!\times 5! \\ 100! -99! \times 5! &< &0 . \\ \end{aligned}

Zach Abueg
Jan 5, 2017

100 ! = ( 99 ! ) ( 100 ) 100! = (99!)(100)

( 99 ! ) ( 5 ! ) = ( 99 ! ) ( 120 ) (99!)(5!) = (99!)(120)

100 < 120 100 < 120

Thus,

( 99 ! ) ( 100 ) < ( 99 ! ) ( 120 ) (99!)(100) < (99!)(120)

( 99 ! ) ( 100 ) ( 99 ! ) ( 120 ) < 0 (99!)(100) - (99!)(120) < 0

MegaMoh .
May 29, 2019

100 ! 99 ! 5 ! = 100 99 ! 99 ! 5 ! = 99 ! ( 100 5 ! ) = 99 ! ( 100 120 ) = 1 ( 20 99 ! ) 100!-99!\cdot 5! = 100\cdot 99!-99!\cdot 5! = 99!(100-5!) = 99!(100-120) = -1\cdot (20\cdot 99!) which is negative so less than 0.

Or just expand 5 ! 5! and separate the 100 100 from the 100 ! 100! to get 100 99 ! 120 99 ! 100\cdot 99!-120\cdot 99! which is clearly negative.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...