Steady Determinant!

Algebra Level 4

A 2 + B 2 + C 2 = A B + B C + C A \large{A^2 + B^2 + C^2 = AB+BC+CA}

Let n n be a positive integer which is not a multiple of 3, and let A , B , C A,B,C be n × n n \times n matrices with real entries that satisfies the above equation. Find the value of the following correct upto three places of decimals:

det ( ( A B B A ) + ( B C C B ) + ( C A A C ) ) = ? \large{ \text{det} \Bigg((AB-BA)+(BC-CB)+(CA-AC) \Bigg) = \ ?}


Note: det ( M ) \text{det}(M) means the determinant of matrix M M .


The answer is 0.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Sep 18, 2015

Let ω = e 2 π i / 3 \omega = e^{2\pi i/3} and let M = A + ω B + ω 2 C M = A + \omega B + \omega^2 C . Using 1 + ω + ω 2 = 0 1 + \omega + \omega^2 = 0 and ω = ω 2 \overline{\omega} = \omega^2 , we get:

M M = ( A + ω B + ω 2 C ) ( A + ω 2 B + ω C ) M\overline{M} = (A+\omega B + \omega^2 C)(A + \omega^2 B+ \omega C)

= A 2 + B 2 + C 2 + ω 2 ( A B + B C + C A ) + ω ( B A + C B + A C ) = A^2 + B^2 + C^2 + \omega^2(AB+BC+CA) + \omega(BA+CB+AC)

= ( 1 + ω 2 ) ( A B + B C + C A ) + ω ( B A + C B + A C ) = (1+\omega^2)(AB+BC+CA) + \omega(BA+CB+AC)

= ω ( A B + B C + C A ( B A + C B + A C ) ) = -\omega(AB+BC+CA - (BA+CB+AC) ) .

Hence:

det ( M M ) = ( ω ) n [ det ( ( A B B A ) + ( B C C B ) + ( C A A C ) ) ] \text{det}(M\overline{M}) = (-\omega)^n [\text{det}((AB-BA)+(BC-CB)+(CA-AC))]

det ( M ) 2 = ( ω ) n [ det ( ( A B B A ) + ( B C C B ) + ( C A A C ) ) ] \Rightarrow |\text{det}(M)|^2 = (-\omega)^n [\text{det}((AB-BA)+(BC-CB)+(CA-AC))]

But det ( M ) 2 R |\text{det}(M)|^2 \in \mathbb R . Therefore ( ω ) n [ det ( ( A B B A ) + ( B C C B ) + ( C A A C ) ) ] R (-\omega)^n [\text{det}((AB-BA)+(BC-CB)+(CA-AC))] \in \mathbb R .

Since n n is not a multiple of 3 3 , therefore, the only option is det ( ( A B B A ) + ( B C C B ) + ( C A A C ) ) = 0 \text{det}((AB-BA)+(BC-CB)+(CA-AC)) = 0 .

Moderator note:

Interesting approach. What motivates the construction of M M ?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...