We are given a positive integer N . Two of its positive divisors are chosen and the differences between N and these two divisors are 2 7 0 and 2 8 0 , respectively.
Find the number of possible value(s) of N .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@zico quintina Nicely done.
Relevant wiki: Diophantine Equations - Solve by Factoring
We can let the two divisors be d 1 , d 2
If gcd ( d 1 , d 2 ) = g ,
then we can let d 1 = g x , d 2 = g y such that x , y are co-prime.
We can deduce that N = lcm ( d 1 , d 2 ) ⋅ m for some positive integer m .
lcm ( d 1 , d 2 ) = g x y ⇒ N = g x y m
N − d 1 = 2 7 0 ⇒ g x y m − g x = 2 7 0 ⇒ g x ( y m − 1 ) = 2 7 0 ⇒ g x y m ( 1 − y m 1 ) = 2 7 0 − − − − ( 1 )
N − d 2 = 2 8 0 ⇒ g x y m − g y = 2 8 0 ⇒ g y ( x m − 1 ) = 2 8 0 ⇒ g x y m ( 1 − x m 1 ) = 2 8 0 − − − − ( 2 )
( 1 ) ÷ ( 2 ) : g x y m ( 1 − x m 1 ) g x y m ( 1 − y m 1 ) = 2 8 0 2 7 0 = 2 8 2 7
1 − x m 1 1 − y m 1 = 2 8 2 7
x m x m − 1 y m y m − 1 = 2 8 2 7
y m ( x m − 1 ) x m ( y m − 1 ) = 2 8 2 7
For simplicity, let a = x m , b = y m
⇒ b ( a − 1 ) a ( b − 1 ) = 2 8 2 7
2 8 a ( b − 1 ) = 2 7 b ( a − 1 )
2 8 a b − 2 8 a = 2 7 a b − 2 7 b
a b − 2 8 a + 2 7 b = 0
a ( b − 2 8 ) + 2 7 b = 0
⇒ a ( b − 2 8 ) + 2 7 ( b − 2 8 ) = − 2 7 ⋅ 2 8
( a + 2 7 ) ( b − 2 8 ) = − 2 7 ⋅ 2 8
( 2 7 + a ) ( 2 8 − b ) = 2 7 ⋅ 2 8
∵ b > 0 ⇒ 2 8 − b < 2 8
and ∵ a > 0 ⇒ 2 7 + a > 0
∴ 2 8 − b > 0
0 < 2 8 − b < 2 8
By prime factorization of 2 7 ⋅ 2 8 , we get 2 8 − b = 1 , 2 , 3 , 4 , 6 , 7 , 9 , 1 2 , 1 4 , 1 8 , 2 1 , 2 7
b = 2 7 , 2 6 , 2 5 , 2 4 , 2 2 , 2 1 , 1 9 , 1 6 , 1 4 , 1 0 , 7 , 1
b − 1 = 2 6 , 2 5 , 2 4 , 2 3 , 2 1 , 2 0 , 1 8 , 1 7 , 1 5 , 1 3 , 9 , 6 , 0
( 1 ) : g x ( y m − 1 ) = 2 7 0 ⇒ g x ( b − 1 ) = 2 7 0
b − 1 is a factor of 2 7 0
∴ b − 1 = 1 8 , 1 5 , 9 , 6 ⇒ b = 1 9 , 1 6 , 1 0 , 7 ⇒ y m = 1 9 , 1 6 , 1 0 , 7
( 1 ) : g x y m ( 1 − y m 1 ) = 2 7 0
Substituting the values of y m , we have g x y m = 2 8 5 , 2 8 8 , 3 0 0 , 3 1 5 ⇒ N = 2 8 5 , 2 8 8 , 3 0 0 , 3 1 5
∴ the number of possible values of N = 4
Problem Loading...
Note Loading...
Set Loading...
Call the divisors in question α and β , so that N − α = 2 7 0 and N − β = 2 8 0 . Then
⟹ α β α − β = N − 2 7 0 = N − 2 8 0 = 1 0 ( 1 ) ( 2 ) ( 3 )
Since α ∣ ∣ ∣ N , it follows from equation (1) that α ∣ ∣ ∣ 2 7 0 . Similarly, equation (2) implies that β ∣ ∣ ∣ 2 8 0 . Combining that with equation (3) means that we are seeking divisors of 2 7 0 that are exactly ten more than some divisors of 2 8 0 .
Listing the divisors of 2 7 0 and 2 8 0 :
2 7 0 : 2 8 0 : 1 , 2 , 3 , 5 , 6 , 9 , 1 0 , 1 5 , 1 8 , 2 7 , 3 0 , 4 5 , 5 4 , 9 0 , 1 3 5 , 2 7 0 1 , 2 , 4 , 5 , 7 , 8 , 1 0 , 1 4 , 2 0 , 2 8 , 3 5 , 4 0 , 5 6 , 7 0 , 1 4 0 , 2 8 0
Thus ( α , β ) has four solutions: ( 1 5 , 5 ) , ( 1 8 , 8 ) , ( 3 0 , 2 0 ) and ( 4 5 , 3 5 ) ; these in turn give us four values for N : 2 8 5 , 2 8 8 , 3 0 0 and 3 1 5 and our answer is 4