Stealthy Numbers

We are given a positive integer N N . Two of its positive divisors are chosen and the differences between N N and these two divisors are 270 270 and 280 , 280, respectively.

Find the number of possible value(s) of N . N.



The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
Jun 28, 2018

Call the divisors in question α \alpha and β \beta , so that N α = 270 N - \alpha = 270 and N β = 280 N - \beta = 280 . Then

α = N 270 ( 1 ) β = N 280 ( 2 ) α β = 10 ( 3 ) \begin{array}{rrlll} & \alpha &= \ \ N - 270 & & (1)\\ & \beta &= \ \ N - 280 & & (2)\\ \implies & \alpha - \beta &= \ \ 10 & & (3) \end{array}

Since α N \alpha \ \Big\rvert \ N , it follows from equation (1) that α 270 \alpha \ \Big\rvert \ 270 . Similarly, equation (2) implies that β 280 \beta \ \Big\rvert \ 280 . Combining that with equation (3) means that we are seeking divisors of 270 270 that are exactly ten more than some divisors of 280 280 .

Listing the divisors of 270 270 and 280 280 :

270 : 1 , 2 , 3 , 5 , 6 , 9 , 10 , 15 , 18 , 27 , 30 , 45 , 54 , 90 , 135 , 270 280 : 1 , 2 , 4 , 5 , 7 , 8 , 10 , 14 , 20 , 28 , 35 , 40 , 56 , 70 , 140 , 280 \begin{array}{ll} & {\boldsymbol{270:}} \quad & 1, 2, 3, 5, 6, 9, 10, {\color{#D61F06}{15}}, {\color{#20A900}{18}}, 27, {\color{#3D99F6}{30}}, {\color{#EC7300}{45}}, 54, 90, 135, 270 \\ \\ & {\boldsymbol{280:}} \quad & 1, 2, 4, {\color{#D61F06}{5}}, 7, {\color{#20A900}{8}}, 10, 14, {\color{#3D99F6}{20}}, 28, {\color{#EC7300}{35}}, 40, 56, 70, 140, 280 \end{array}

Thus ( α , β ) (\alpha, \beta) has four solutions: ( 15 , 5 ) , ( 18 , 8 ) , ( 30 , 20 ) (15, 5), (18, 8), (30, 20) and ( 45 , 35 ) (45, 35) ; these in turn give us four values for N : 285 , 288 , 300 N: \ 285, 288, 300 and 315 315 and our answer is 4 \boxed{4}

@zico quintina Nicely done.

donglin loo - 2 years, 11 months ago
Donglin Loo
Jun 27, 2018

Relevant wiki: Diophantine Equations - Solve by Factoring

We can let the two divisors be d 1 , d 2 d_{1},d_{2}

If gcd ( d 1 , d 2 ) = g \text{gcd}(d_{1},d_{2})=g ,

then we can let d 1 = g x , d 2 = g y d_{1}=gx,d_{2}=gy such that x , y x,y are co-prime.

We can deduce that N = lcm ( d 1 , d 2 ) m N=\text{lcm}(d_{1},d_{2})\cdot m for some positive integer m m .

lcm ( d 1 , d 2 ) = g x y N = g x y m \text{lcm}(d_{1},d_{2})=gxy\Rightarrow N=gxym

N d 1 = 270 g x y m g x = 270 g x ( y m 1 ) = 270 g x y m ( 1 1 y m ) = 270 ( 1 ) N-d_{1}=270\Rightarrow gxym-gx=270\Rightarrow gx(ym-1)=270\Rightarrow gxym(1-\cfrac{1}{ym})=270----(1)

N d 2 = 280 g x y m g y = 280 g y ( x m 1 ) = 280 g x y m ( 1 1 x m ) = 280 ( 2 ) N-d_{2}=280\Rightarrow gxym-gy=280\Rightarrow gy(xm-1)=280\Rightarrow gxym(1-\cfrac{1}{xm})=280----(2)

( 1 ) ÷ ( 2 ) : g x y m ( 1 1 y m ) g x y m ( 1 1 x m ) = 270 280 = 27 28 (1)\div(2):\cfrac{gxym(1-\cfrac{1}{ym})}{gxym(1-\cfrac{1}{xm})}=\cfrac{270}{280}=\cfrac{27}{28}

1 1 y m 1 1 x m = 27 28 \cfrac{1-\cfrac{1}{ym}}{1-\cfrac{1}{xm}}=\cfrac{27}{28}

y m 1 y m x m 1 x m = 27 28 \cfrac{\cfrac{ym-1}{ym}}{\cfrac{xm-1}{xm}}=\cfrac{27}{28}

x m ( y m 1 ) y m ( x m 1 ) = 27 28 \cfrac{xm(ym-1)}{ym(xm-1)}=\cfrac{27}{28}

For simplicity, let a = x m , b = y m a=xm, b=ym

a ( b 1 ) b ( a 1 ) = 27 28 \Rightarrow \cfrac{a(b-1)}{b(a-1)}=\cfrac{27}{28}

28 a ( b 1 ) = 27 b ( a 1 ) 28a(b-1)=27b(a-1)

28 a b 28 a = 27 a b 27 b 28ab-28a=27ab-27b

a b 28 a + 27 b = 0 ab-28a+27b=0

a ( b 28 ) + 27 b = 0 a(b-28)+27b=0

a ( b 28 ) + 27 ( b 28 ) = 27 28 \Rightarrow a(b-28)+27(b-28)=-27\cdot 28

( a + 27 ) ( b 28 ) = 27 28 (a+27)(b-28)=-27\cdot 28

( 27 + a ) ( 28 b ) = 27 28 (27+a)(28-b)=27\cdot 28

b > 0 28 b < 28 \because b>0\Rightarrow 28-b<28

and a > 0 27 + a > 0 \because a>0\Rightarrow 27+a>0

28 b > 0 \therefore 28-b>0

0 < 28 b < 28 0<28-b<28

By prime factorization of 27 28 27\cdot28 , we get 28 b = 1 , 2 , 3 , 4 , 6 , 7 , 9 , 12 , 14 , 18 , 21 , 27 28-b=1,2,3,4,6,7,9,12,14,18,21,27

b = 27 , 26 , 25 , 24 , 22 , 21 , 19 , 16 , 14 , 10 , 7 , 1 b=27,26,25,24,22,21,19,16,14,10,7,1

b 1 = 26 , 25 , 24 , 23 , 21 , 20 , 18 , 17 , 15 , 13 , 9 , 6 , 0 b-1=26,25,24,23,21,20,18,17,15,13,9,6,0

( 1 ) : g x ( y m 1 ) = 270 g x ( b 1 ) = 270 (1):gx(ym-1)=270\Rightarrow gx(b-1)=270

b 1 b-1 is a factor of 270 270

b 1 = 18 , 15 , 9 , 6 b = 19 , 16 , 10 , 7 y m = 19 , 16 , 10 , 7 \therefore b-1=18,15,9,6\Rightarrow b=19,16,10,7\Rightarrow ym=19,16,10,7

( 1 ) : g x y m ( 1 1 y m ) = 270 (1):gxym(1-\cfrac{1}{ym})=270

Substituting the values of y m ym , we have g x y m = 285 , 288 , 300 , 315 N = 285 , 288 , 300 , 315 gxym=285,288,300,315 \Rightarrow N=285,288,300,315

\therefore the number of possible values of N = 4 N=\boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...