Step by Step

Calculus Level 3

n = 1 0 2 π sin ( m π θ 2 ) sin ( n π θ 2 ) d θ \sum_{n=1}^\infty \int_0^2 \pi \sin \left( \frac{m\pi\theta}2 \right) \sin \left( \frac{n\pi\theta}2 \right) \, d \theta

Find the closed form of the sum above, where n n and m m are positive integers.

0 0 Impossible to find π \pi 2 2 1 1 \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Stuti Malik
Feb 8, 2017

Observe the integral:

0 2 \int_{0}^{2} π \pi ( sin m π θ 2 \sin{\frac{m\pi\theta}{2}} )( sin n π θ 2 \sin{\frac{n\pi\theta}{2}} ) d θ d\theta

There are two cases:-

1) n=m

2) n different from m

For n=m,

The integral simplifies to-

0 2 \int_{0}^{2} π \pi ( sin 2 ( m π θ 2 ) \sin^2({\frac{m\pi\theta}{2}}) ) d θ d\theta

Using sin 2 ( a ) \sin^2(a) = 1 cos ( 2 a ) 2 \frac{1-\cos(2a)}{2} ,

Here:

a= m π θ 2 \frac{m\pi\theta}{2}

We get:

π 2 \frac{\pi}{2} 0 2 \int_{0}^{2} ( 1 cos m π θ ) (1-\cos{m\pi\theta}) d θ d\theta = π \pi

So, if n=m the integral is just π \pi .

If n is different from m,

Recall:

cos ( a + b ) \cos(a+b) = cos ( a ) cos ( b ) \cos(a)\cos(b) - sin ( a ) sin ( b ) \sin(a)\sin(b)

and

cos ( a b ) \cos(a-b) = cos ( a ) cos ( b ) \cos(a)\cos(b) + sin ( a ) sin ( b ) \sin(a)\sin(b)

Therefore,

sin ( a ) sin ( b ) \sin(a)\sin(b) = cos ( a b ) cos ( a + b ) 2 \frac{\cos(a-b)- \cos(a+b)}{2}

Here:

a= m π θ 2 \frac{m\pi\theta}{2}

b= n π θ 2 \frac{n\pi\theta}{2}

Note- the cos \cos function integrates to sin \sin function and the angle is an integer multiple of π \pi for θ \theta between 0 and 2.

So, the value of integral evaluated at n different from m is zero.

Conclusion: The integral= π \pi only for n=m and zero for all other values of n.

Therefore, the answer is π \pi .

Bonus question: What will be the answer if I change the 2s' in the question to some other integer, L?

i.e. n = 1 \sum_{n=1}^{\infty} 0 L \int_{0}^{L} π \pi ( sin m π θ L \sin{\frac{m\pi\theta}{L}} )( sin n π θ L \sin{\frac{n\pi\theta}{L}} ) d θ d\theta

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...