Step makes our life easier

k = 1 2020 1 k 1 4 = ? \large \left \lfloor \sum_{k=1}^{2020} \frac{1}{k^\frac 14}\right \rfloor = \ ?

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 401.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Oct 5, 2020

Due to Euler- Machaurin summation we have k = 1 2020 1 k 4 = ζ ( 1 4 ) + 4 202 0 3 4 3 + 1 4 2020 { x } x 5 / 4 d x \sum_{k=1}^{2020}\frac{1}{\sqrt[4]{k}} =\zeta\left(\frac{1}{4}\right)+\frac{4\sqrt[4]{2020^3}}{3}+\frac{1}{4}\int_{2020}^{\infty}\frac{\left\{x\right\}}{x^{5/4}}dx since 0 < 2020 { x } x 5 / 4 d x < 2020 d x x 5 / 4 = 4 2 505 4 0 < \int_{2020}^{\infty}\frac{\left\{x\right\}}{x^{5/4}}dx < \int_{2020}^{\infty}\frac{dx}{x^{5/4}}=\frac{4\sqrt{2}}{\sqrt[4]{505}} so the approximated sum k = 1 2020 1 k 4 ζ ( 1 4 ) + 4 3 202 0 3 4 + 2 2020 4 401.35526 \sum_{k=1}^{2020}\frac{1}{\sqrt[4]{k}} \approx \zeta\left(\frac{1}{4}\right)+\frac{4}{3}\sqrt[4]{2020^3}+\frac{\sqrt{2}}{\sqrt[4]{2020}}\sim 401.35526 so floor value we have 401 401 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...