Stewart's Sequences 3 of 5

Algebra Level 4

Considering the following information:

  • The n t h n^{th} term formula for a sequence is 3 n 2 7 n + 5 { 3n }^{ 2 }-7n+5
  • If n = x n = x , the x t h t e r m = 31111 x^{th} term = 31111
  • x x is a positive non-zero integer

Determine which answer is equivalent to x ( 2 x + 4 ) + 17 x(2x+4)+17 .

2 15 3 8 4 6 5 3 6 3 7 2 8 2 9 1 1 0 0 2^{15}-3^8-4^6-5^3-6^3-7^2-8^2-9^1-10^0 2 15 3 9 + 4 7 5 6 + 6 5 { 2 }^{ 15 }-{ 3 }^{ 9 }+{ 4 }^{ 7 }-{ 5 }^{ 6 }+{ 6 }^{ 5 } 2 15 3 8 4 6 5 3 6 4 + 7 3 + 8 3 + 9 2 + 1 0 0 2^{15}-3^8-4^6-5^3-6^4+7^3+8^3+9^2+10^0 2 15 3 10 + 4 8 5 7 + 6 6 + 7 5 8 4 + 9 3 { 2 }^{ 15 }-{ 3 }^{10 }+{ 4 }^{8 }-{ 5 }^{7}+{ 6 }^{6 }+7^5-8^4+9^3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Stewart Feasby
Oct 5, 2014

Firstly, we have: 3 x 2 7 x + 5 = 31111 3x^2 -7x+5=31111 Rearranging to = 0 gives: 3 x 2 7 x 31106 = 0 3x^2-7x-31106=0 Using the quadratic formula to solve the equation: x = b ± b 2 4 a c 2 a x=\frac { -b\pm \sqrt { b^{ 2 }-4ac } }{ 2a } Inputting our values of a = 3 , b = 7 , c = 31106 a=3, b=-7, c=-31106 gives us: x = 7 ± ( 7 ) 2 4 × 3 × 31106 2 × 3 x=\frac { 7\pm \sqrt { {(-7)}^{ 2 }-4\times 3\times -31106 } }{ 2\times 3 } Simplifying: x = 7 ± 49 + 373272 6 x=\frac { 7\pm \sqrt { 49+373272 } }{ 6 } Summing the square root: x = 7 ± 373321 6 x=\frac {7\pm \sqrt {373321}}{6} This results in two answers: x = 7 + 611 6 o r 7 611 6 x=\frac{7+611}{6}\quad or\quad \frac{7-611}{6} x = 103 o r 302 3 x=103\quad or\quad -\frac{302}{3} Now, we're told that x x is a positive , non-zero integer . This means that x = 103 x=103 Now, inputting our value for x x into the given equation, results in: 103 ( 2 × 103 + 4 ) + 17 103(2\times 103 + 4) + 17 Which simplifies to: 103 × 210 + 17 103\times 210 +17 Which equals: 21647 21647 Now, the four options given were: 2 15 3 9 + 4 7 5 6 + 6 5 2 15 3 8 4 6 5 3 6 3 7 2 8 2 9 1 1 0 0 2 15 3 8 4 6 5 3 6 4 + 7 3 + 8 3 + 9 2 + 1 0 0 2 15 3 10 + 4 8 5 7 + 6 6 + 7 5 8 4 + 9 3 \begin{matrix} 2^{ 15 }-3^{ 9 }+4^{ 7 }-5^{ 6 }+6^{ 5 } \\ 2^{ 15 }-3^{ 8 }-4^{ 6 }-5^{ 3 }-6^{ 3 }-7^{ 2 }-8^{ 2 }-9^{ 1 }-10^{ 0 } \\ 2^{ 15 }-3^{ 8 }-4^{ 6 }-5^{ 3 }-6^{ 4 }+7^{ 3 }+8^{ 3 }+9^{ 2 }+10^{ 0 } \\ 2^{ 15 }-3^{ 10 }+4^{ 8 }-5^{ 7 }+6^{ 6 }+7^{ 5 }-8^{ 4 }+9^{ 3 } \end{matrix} These can be inputted into a calculator, or solved on paper to give: 21620 21647 21627 21226 \begin{matrix} 21620 \\ 21647 \\ 21627 \\ 21226 \end{matrix} Therefore, the answer we are looking for is: 2 15 3 8 4 6 5 3 6 3 7 2 8 2 9 1 1 0 0 \boxed {2^{ 15 }-3^{ 8 }-4^{ 6 }-5^{ 3 }-6^{ 3 }-7^{ 2 }-8^{ 2 }-9^{ 1 }-10^{ 0 }} Which gives an answer of 21647 \boxed {21647}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...