Given the following sequence of numbers:
2 7 , 4 1 , 6 9 , 1 2 5 , 2 3 7 . . .
Considering the common ratio is 2, the n t h term can be expressed as a × 2 n + b .
Find a + b ∣ a − b ∣
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice, used the same method
L e t S = 2 7 + 4 1 + 6 9 + 1 2 5 + 2 3 7 + . . . . T n , w h e r e T n i s t h e n t h t e r m . A l s o S = 2 7 + 4 1 + 6 9 + 1 2 5 + . . . . . . T n − 1 + T n S u b t r a c t i n g , S − S = 2 7 + { ( 4 1 − 2 7 ) + ( 6 9 − 4 1 ) + . . . . ( T n − T n − 1 ) } − T n 0 = 2 7 + ( 1 4 + 2 8 + 5 6 + . . . . ( T n − T n − 1 ) ) − T n S h i f t i n g T n t o t h e o t h e r s i d e , T n = 2 7 + ( 1 4 + 2 8 + 5 6 + . . . . ( T n − T n − 1 ) ) N o w , t h e t e r m s i n t h e b r a c k e t s f o r m a G . P . u p t o ( n − 1 ) t e r m s w i t h f i r s t t e r m = 1 4 a n d c o m m o n d i f f e r e n c e = 2 . A p p l y i n g t h e f o r m u l a f o r s u m o f ′ n ′ t e r m s o f a G . P . T n = 2 7 + ( 1 4 2 − 1 2 n − 1 − 1 ) T n = 2 7 + 1 4 ( 2 2 n − 1 ) { a s 2 n − 1 = 2 2 n } T n = 2 7 + 7 . 2 n − 1 4 T n = 7 . 2 n + 1 3 C o m p a r i n g , a = 7 , b = 1 3 S o , a + b ∣ a − b ∣ = 7 + 1 3 ∣ 7 − 1 3 ∣ = 2 0 6 = 1 0 3
CHEERS!!:):)
Absolutely Brilliant solution! Props to you!
I just used the fact that we are given the first term and the second term, so we can set up a system of two equations with two unknowns. Solve for a and b, then substitute those values into the given expression.
Nice and quick method! Didn't think of this one! Maybe I should've replaced 2 with a k? And define k as some integer to make this more difficult?
Problem Loading...
Note Loading...
Set Loading...
a × 2 n + b T h e r e f o r e a d d i n g t h e v a l u e s o f t h e f i r s t t w o t e r m s : a × 2 1 + b = 2 7 2 a + b = 2 7 . . . . . . . . ( 1 ) a × 2 2 + b = 4 1 4 a + b = 4 1 . . . . . . . . ( 2 ) S u b t r a c t i n g ( 1 ) f r o m ( 2 ) 2 a = 1 4 a = 7 P u t t i n g t h i s b a c k i n t o ( 1 ) 2 × 7 + b = 2 7 b = 1 3 T h e r e f o r e : 7 + 1 3 ∣ 7 − 1 3 ∣ 2 0 6 = 1 0 3
You dont even need the values of the next terms!!!