Stewart's Sequences 4 of 5

Algebra Level 2

Given the following sequence of numbers:

27 , 41 , 69 , 125 , 237 . . . 27,\quad 41,\quad 69,\quad 125,\quad 237\quad ...

Considering the common ratio is 2, the n t h n^{th} term can be expressed as a × 2 n + b a\times 2^n + b .

Find a b a + b \frac { \left| a-b \right| }{ a+b }

1 4 \frac {1}{4} 3 10 \frac {3}{10} 1 3 \frac {1}{3} 8 25 \frac {8}{25}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sualeh Asif
Oct 4, 2014

a × 2 n + b T h e r e f o r e a d d i n g t h e v a l u e s o f t h e f i r s t t w o t e r m s : a × 2 1 + b = 27 2 a + b = 27 . . . . . . . . ( 1 ) a × 2 2 + b = 41 4 a + b = 41 . . . . . . . . ( 2 ) S u b t r a c t i n g ( 1 ) f r o m ( 2 ) 2 a = 14 a = 7 P u t t i n g t h i s b a c k i n t o ( 1 ) 2 × 7 + b = 27 b = 13 T h e r e f o r e : 7 13 7 + 13 6 20 = 3 10 a\times { 2 }^{ n }+b\\ Therefore\quad adding\quad the\quad values\quad of\quad the\quad first\quad two\quad terms:\\ a\times { 2 }^{ 1 }+b=27\quad \\ 2a+b=27\quad ........(1)\\ a\times { 2 }^{ 2 }+b=41\quad \\ 4a+b=41\quad ........(2)\\ Subtracting\quad (1)\quad from\quad (2)\\ 2a=14\\ a=7\\ Putting\quad this\quad back\quad into\quad (1)\\ 2\times 7+b=27\\ b=13\\ Therefore:\\ \frac { \left| 7-13 \right| }{ 7+13 } \\ \frac { 6 }{ 20 } =\boxed { \frac { 3 }{ 10 } }

You dont even need the values of the next terms!!!

Nice, used the same method

William Lockhart - 6 years, 8 months ago

L e t S = 27 + 41 + 69 + 125 + 237 + . . . . T n , w h e r e T n i s t h e n t h t e r m . A l s o S = 27 + 41 + 69 + 125 + . . . . . . T n 1 + T n S u b t r a c t i n g , S S = 27 + { ( 41 27 ) + ( 69 41 ) + . . . . ( T n T n 1 ) } T n 0 = 27 + ( 14 + 28 + 56 + . . . . ( T n T n 1 ) ) T n S h i f t i n g T n t o t h e o t h e r s i d e , T n = 27 + ( 14 + 28 + 56 + . . . . ( T n T n 1 ) ) N o w , t h e t e r m s i n t h e b r a c k e t s f o r m a G . P . u p t o ( n 1 ) t e r m s w i t h f i r s t t e r m = 14 a n d c o m m o n d i f f e r e n c e = 2. A p p l y i n g t h e f o r m u l a f o r s u m o f n t e r m s o f a G . P . T n = 27 + ( 14 2 n 1 1 2 1 ) T n = 27 + 14 ( 2 n 2 1 ) { a s 2 n 1 = 2 n 2 } T n = 27 + 7. 2 n 14 T n = 7. 2 n + 13 C o m p a r i n g , a = 7 , b = 13 S o , a b a + b = 7 13 7 + 13 = 6 20 = 3 10 \quad Let\quad S=27+41+69+125+237+....{ T }_{ n },\quad where\quad { T }_{ n }\quad is\quad the\quad { n }^{ th }\quad term.\\ Also\quad S=\quad \quad \quad 27+41+69+125+......{ T }_{ n-1 }+{ T }_{ n }\\ \\ Subtracting,\quad S-S\quad =\quad 27+\{ (41-27)+(69-41)+....({ T }_{ n }-{ T }_{ n-1 })\} -{ T }_{ n }\\ 0\quad =\quad 27\quad +\quad (14+28+56+....({ T }_{ n }-{ T }_{ n-1 }))\quad -\quad { T }_{ n }\\ \\ Shifting\quad { T }_{ n }\quad to\quad the\quad other\quad side,\\ { T }_{ n }=\quad 27\quad +\quad (14+28+56+....({ T }_{ n }-{ T }_{ n-1 }))\\ \\ Now,\quad the\quad terms\quad in\quad the\quad brackets\quad form\quad a\quad G.P.\quad upto\quad (n-1)\quad terms\\ with\quad first\quad term\quad =\quad 14\quad and\quad common\quad difference\quad =\quad 2.\\ Applying\quad the\quad formula\quad for\quad sum\quad of\quad 'n'\quad terms\quad of\quad a\quad G.P.\\ \\ { T }_{ n }=27\quad +\quad (14\frac { { 2 }^{ n-1 }-1 }{ 2-1 } )\\ { T }_{ n }=27\quad +\quad 14(\frac { { 2 }^{ n } }{ 2 } -1)\quad \quad \quad \quad \quad \quad \quad \quad \{ as\quad { 2 }^{ n-1 }=\frac { { 2 }^{ n } }{ 2 } \} \\ { T }_{ n }=27\quad +\quad 7.{ 2 }^{ n }-14\\ { T }_{ n }=\quad 7.{ 2 }^{ n }+13\\ \\ Comparing,\quad a=7,\quad b=13\\ So,\quad \frac { \left| a-b \right| }{ a+b } =\frac { \left| 7-13 \right| }{ 7+13 } =\frac { 6 }{ 20 } =\frac { 3 }{ 10 }

CHEERS!!:):)

Absolutely Brilliant solution! Props to you!

Stewart Feasby - 6 years, 8 months ago

Log in to reply

Lol..Thanks @Stewart Feasby :):)

A Former Brilliant Member - 6 years, 8 months ago

I just used the fact that we are given the first term and the second term, so we can set up a system of two equations with two unknowns. Solve for a and b, then substitute those values into the given expression.

Nice and quick method! Didn't think of this one! Maybe I should've replaced 2 with a k? And define k as some integer to make this more difficult?

Stewart Feasby - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...