Straight Lines

Geometry Level 3

Let A B C D ABCD be a parallelogram, the equations of whose diagonals are A C : x + 2 y 3 = 0 AC: x+2y-3 =0 and B D : 2 x + y 3 = 0 BD: 2x + y - 3 = 0 . If the length of the diagonal A C = 4 AC=4 units and the area of the parallelogram [ A B C D ] = 8 [ABCD] = 8 square units, what is the length of the longer side of the parallelogram?

2 58 3 \frac {2\sqrt{58}}3 2 58 9 \frac {2\sqrt{58}}9 3 58 9 \frac {3\sqrt{58}}9 4 58 9 \frac {4\sqrt{58}}9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let A C = c \vec{AC}=\mathbf{c} , B D = d \vec{BD}=\mathbf{d} , A B = D C = a \vec{AB}=\vec{DC}=\mathbf{a} and A D = B C = b \vec{AD}=\vec{BC}=\mathbf{b} . One parallel vector to A C \vec{AC} is ( 2 , 1 ) (2,-1) and to B D \vec{BD} is ( 1 , 2 ) (-1,2) . So, c ^ = ( 2 5 , 1 5 ) \hat{\mathbf{c}}=\left(\dfrac{2}{\sqrt{5}},-\dfrac{1}{\sqrt{5}}\right) and d ^ = ( 1 5 , 2 5 ) \hat{\mathbf{d}}=\left(-\dfrac{1}{\sqrt{5}},\dfrac{2}{\sqrt{5}}\right) .

We know that 1 2 c × d = 8 \dfrac{1}{2}\lVert \mathbf{c} \times \mathbf{d} \rVert = 8 , so c d c ^ × d ^ = 16 \lVert \mathbf{c} \rVert \lVert \mathbf{d} \rVert \lVert \hat{\mathbf{c}} \times \hat{\mathbf{d}} \rVert = 16 . But c = 4 \lVert \mathbf{c} \rVert = 4 and c ^ × d ^ = 3 5 \lVert \hat{\mathbf{c}} \times \hat{\mathbf{d}} \rVert = \dfrac{3}{5} , so d = 20 3 \lVert \mathbf{d} \rVert = \dfrac{20}{3} .

So, we have the diagonals: c = ( 8 5 , 4 5 ) \mathbf{c}=\left(\dfrac{8}{\sqrt{5}},-\dfrac{4}{\sqrt{5}}\right) and d = ( 20 3 5 , 40 3 5 ) \mathbf{d}=\left(-\dfrac{20}{3\sqrt{5}},\dfrac{40}{3\sqrt{5}}\right) .

We know that, in a parallelogram, a + b = c \mathbf{a}+\mathbf{b}=\mathbf{c} and b a = d \mathbf{b}-\mathbf{a}=\mathbf{d} , so a = 1 2 ( c d ) \mathbf{a}=\dfrac{1}{2}(\mathbf{c}-\mathbf{d}) and b = 1 2 ( c + d ) \mathbf{b}=\dfrac{1}{2}(\mathbf{c}+\mathbf{d}) .

Substituting the values of the diagonals, we get a = ( 22 3 5 , 26 3 5 ) \mathbf{a}=\left(\dfrac{22}{3\sqrt{5}},-\dfrac{26}{3\sqrt{5}}\right) , and finally a = 2 58 3 \lVert \mathbf{a} \rVert = \boxed{\dfrac{2\sqrt{58}}{3}} .

Note that the question does not give enough information to uniquely determine the locations of A, B, C, D. That is why I've edited the question from asking for length AB, to asking for the longer side of the parallelogram.

Calvin Lin Staff - 3 years, 9 months ago
Chew-Seong Cheong
Aug 27, 2017

Relevant wiki: Pythagorean Theorem

Let the diagonals A C AC and B D BD intersect at M M and B M C = θ \angle BMC = \theta . We note that

{ A C : x + 2 y 3 = 0 y = 1 2 x + 3 2 . . . ( 1 ) B D : 2 x + y 3 = 0 y = 2 x + 3 . . . ( 2 ) \begin{cases} AC: x+2y - 3 = 0 & \implies y = - \dfrac 12 x + \dfrac 32 & ...(1) \\ BD: 2x+y - 3 = 0 & \implies y = - 2 x + 3 & ...(2) \end{cases}

Therefore the gradients of diagonals A C AC and B D BD are tan 1 1 2 \tan^{-1} - \frac 12 and tan 1 2 \tan^{-1} - 2 respectively and that

θ = tan 1 1 2 tan 1 2 tan θ = ( 1 2 ) ( 2 ) 1 + ( 1 2 ) ( 2 ) = 3 4 \begin{aligned} \theta & = \tan^{-1} - \frac 12 - \tan^{-1} - 2 \\ \tan \theta & = \frac {\left(- \frac 12\right)-(-2)}{1+\left(- \frac 12\right)(-2)} = \frac 34 \end{aligned}

Now, let the perpendicular from point B B to A C AC extension be B P BP . Given that A C = 4 AC=4 and [ A B C D ] = 8 [ABCD]=8 , B P = 2 BP = 2 . Since B P M P = tan θ = 3 4 \dfrac {BP}{MP} = \tan \theta = \dfrac 34 , M P = 4 3 B P = 8 3 \implies MP = \dfrac 43 BP = \dfrac 83 . And by Pythagorean theorem, we have:

A B 2 = A P 2 + B P 2 = ( A M + M P ) 2 + B P 2 = ( 2 + 8 3 ) 2 + 2 2 = 232 9 A B = 2 58 3 \begin{aligned} AB^2 & = AP^2 + BP^2 \\ & = (AM+MP)^2 + BP*2 \\ & = \left(2+\frac 83 \right)^2 + 2^2 \\ & = \frac {232}9 \\ \implies AB & = \boxed{\dfrac{2\sqrt{58}}3} \end{aligned}

Note that the question does not give enough information to uniquely determine the locations of A, B, C, D. That is why I've edited the question from asking for length AB, to asking for the longer side of the parallelogram.

Calvin Lin Staff - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...