Straight lines JEE 2

Geometry Level 5

If x = 2 , 4 x=2,4 are the solutions of the equation m x + α + m x + β = c |mx+\alpha|+|mx+\beta|=c where m > 0 m>0 and α , β , c \alpha,\beta,c are non zero constants , then α + β m |\frac{\alpha+\beta}{m}| is equal to

Also check this Optics Problem


The answer is 6.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rushikesh Joshi
Apr 28, 2015

|x+alpha ÷m|+|x+beta÷m|=c÷m (since m>0) draw graph. x coordinate of Midpt of (2,c÷m) and (4,c÷m) is same as that of (-alpha÷m,0) and (-beta÷m,0) . so answer =6

W h e n x = 2 , w e h a v e , ( 2 m + α ) + ( 2 m + β ) = c , a n d ( 2 m + α ) ( 2 m + β ) = c . S u b t r a c t i n g t h e f i r s t e q u a t i o n f r o m t h e s e c o n d w e g e t 2 m = β . . . . . . . . . . . . ( A ) S i m i l a r l y f o r x = 4 , w e g e t 4 m = α . . . . . ( B ) S o l v i n g ( A ) a n d ( B ) , w e g e t 6 m = ( α + b e t a ) . α + β m = 6. N o t e t h a t s o l v i n g a b s v a l u e s , w e g e t f o u r e q u a t i o n s b u t p a i r s o f t w o s a r e i d e n t i c a l . e . g . a + b + a b = 0 , g i v e s 2 a = 0 , . . . . 2 b = 0 , . . . . 2 a = 0 , . . . . 2 b = 0 S i n c e t h e e q u a t i o n i s e q u a l t o 0 , a n d 0 = 0 , f i r s t a n d T h i r d a n d s e c o n d a n d f o u r t h e q u a t i o n s a r e i d e n t i c a l . When~x=2,~we~have,~~ (2m+\alpha)+(2m+\beta)=c,~~and~~(2m+\alpha)-(2m+\beta)=c.\\ Subtracting~ the~ first~equation~from~the~second~we~get~2m=-\beta............(A)\\ Similarly~for~x=4, ~we~get~4m=-\alpha.....(B)\\ Solving~(A)~and~(B),~we~get~6m=-(\alpha+beta).\\ \implies~\Big |\dfrac{\alpha+\beta} m \Big|=\Large \color{#D61F06}{6}.\\ Note~that~solving~abs~values,~we~get~four~equations~but~pairs~of~twos~are~identical.\\ e.g.~~~|a+b|+|a-b|=0,~~gives~~2a=0,....2b=0,....-2a=0,....-2b=0\\ Since~the~equation~is~equal~to~0,~and~0=-0,~~first~and~Third~~and~~second~and~fourth~equations~are~identical.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...