Strange Equality Condition

Algebra Level 4

Let x , y , x, y, and z z be real numbers satisfying x y + z + y z + x + z x + y = 1. \dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1.

Find the maximum value of x 2 y + z + y 2 z + x + z 2 x + y . \dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sharky Kesa
Oct 25, 2017

Note that x + y + z = ( x + y + z ) ( x y + z + y z + x + z x + y ) = x ( x + y + z ) y + z + y ( y + z + x ) z + x + z ( z + x + y ) x + y = x 2 y + z + ( y + z ) x y + z + y 2 z + x + ( z + x ) y z + x + z 2 x + y + ( x + y ) z x + y = x 2 y + z + y 2 z + x + z 2 x + y + ( x + y + z ) x 2 y + z + y 2 z + x + z 2 x + y = 0 \begin{aligned} x+y+z&=(x+y+z)\left (\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y} \right )\\ &= \dfrac{x(x+y+z)}{y+z}+\dfrac{y(y+z+x)}{z+x}+\dfrac{z(z+x+y)}{x+y}\\ &= \dfrac{x^2}{y+z}+\dfrac{(y+z)x}{y+z}+\dfrac{y^2}{z+x}+\dfrac{(z+x)y}{z+x}+\dfrac{z^2}{x+y}+\dfrac{(x+y)z}{x+y}\\ &= \dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+(x+y+z)\\ \implies \dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y} &= 0 \end{aligned}

Therefore, the expression is always 0.

Very clever!

James Wilson - 3 years, 7 months ago

Kay... what?

Kent Tyrer - 3 years, 7 months ago

Log in to reply

I have edited the solution to make it clearer.

Sharky Kesa - 3 years, 7 months ago

Amazing problem and solution!(+1)

Rishu Jaar - 3 years, 7 months ago

k ( x , y , z ) = k ( x , y , z ) ( 1 ( x , y , z ) ) x + y + z = ( x + y + z ) ( x y + z + y z + x + z x + y ) = x 2 y + z + x y y + z + x z y + z + x y z + x + y 2 z + x + y z z + x + x z x + y + y z x + y + z 2 x + y = x 2 y + z + x ( y + z ) y + z + x 2 y + z + y ( z + x ) z + x + z 2 x + y + z ( x + y ) x + y = x 2 y + z + y 2 z + x + z 2 x + y + ( x + y + z ) x 2 y + z + y 2 z + x + z 2 x + y = 0 \begin{aligned}k_{\left({x,y,z}\right)}={k}_{\left({x,y,z}\right)}&\left({1}_{\left({x,y,z}\right)}\right)\\ x+y+z&=(x+y+z)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\\ &=\dfrac{x^2}{y+z}+\dfrac{xy}{y+z}+\dfrac{xz}{y+z}+\dfrac{xy}{z+x}+\dfrac{y^2}{z+x}+\dfrac{yz}{z+x} +\dfrac{xz}{x+y}+\dfrac{yz}{x+y}+\dfrac{z^2}{x+y}\\ &=\dfrac{x^2}{y+z}+\dfrac{x{\left({y+z}\right)}}{y+z}+\dfrac{x^2}{y+z}+\dfrac{y{\left({z+x}\right)}}{z+x}+ \dfrac{z^2}{x+y}+\dfrac{z{\left({x+y}\right)}}{x+y}\\ &=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+(x+y+z)\\ \implies \dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}&=0\end{aligned}

Michael Fitzgerald - 3 years, 7 months ago

Pretty neat problem

Michael Fitzgerald - 3 years, 7 months ago

Can we know the value of x,y and z ?

Dayan Wehbe - 3 years, 6 months ago

Log in to reply

Take a look at this: https://brilliant.org/problems/simple-generalization-right/

James Wilson - 3 years, 6 months ago

@Dayan Wehbe Yes, there is a generalization. James Wilson has already showed you the link. Check out Rocco Dalto's solution.

Steven Jim - 3 years, 6 months ago

Note that according to wolfram alfa, there are no real x, y, z satisfying the hypothesis...

Iulia Black - 3 years, 5 months ago

Log in to reply

Did you set the partial derivatives to zero, and end up with ( x y + z ) 2 + ( y x + z ) 2 + ( z x + y ) 2 = 1 \Big(\frac{x}{y+z}\Big)^2+\Big(\frac{y}{x+z}\Big)^2+\Big(\frac{z}{x+y}\Big)^2=1 ? That was my mistake originally...

James Wilson - 3 years, 5 months ago

If there are no real x, y, z satisfying the problem, then the problem is flawed, and it cannot have an answer.

Linda Slovik - 2 years, 4 months ago

There are real x , y , z x, y,z satisfying the original equation. Check out the solutions to this problem https://brilliant.org/problems/simple-generalization-right/

James Wilson - 2 years, 4 months ago
Antoine G
Nov 6, 2017

Note that if ( x , y , z ) (x,y,z) is a solution to the equation x y + z + y x + z + z x + y = 1 \frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} = 1 , then for any r R r \in \mathbb{R} , ( r x , r y , r z ) (rx,ry,rz) is also a solution. Let Q ( x , y , z ) = x 2 y + z + y 2 x + z + z 2 x + y Q(x,y,z)= \frac{x^2}{y+z} + \frac{y^2}{x+z} + \frac{z^2}{x+y} be the quantity to maximise. Note that Q ( r x , r y , r z ) = r Q ( x , y , z ) Q(rx,ry,rz) = r Q(x,y,z) . Hence there cannot be a maximum value unless Q ( x , y , z ) = 0 Q(x,y,z) =0 .

Do you have any references about this quality? I would like to know more about it. Any help is appreciated, thank you.

Simpson Eng - 3 years, 7 months ago

Log in to reply

I'm basically using the fact that the function is homogeneous (of degree 1) while the function which gives the condition is homogeneous of degree 0. Check the article "Homogeneous function" on wikipedia.

Antoine G - 3 years, 7 months ago
Abhinav Sinha
Nov 12, 2017

Let x + y + z = s Now c y c l i c x 2 y + z = c y c l i c x 2 s x + s x s x = c y c l i c ( x ( x s ) s x + s x y + z ) = x y z + s = s + s = 0 \text{Let} \; x+y+z = s \\ \text{Now} \sum_{cyclic} \dfrac{x^{2}}{y+z}= \sum_{cyclic} \dfrac{x^{2} -sx+sx}{s-x} = \sum_{cyclic} \left( \dfrac{x(x-s)}{s-x} + \dfrac{sx}{y+z} \right) = -x-y-z + s = -s+s =0

Mohammed Diai
Nov 8, 2017

I have solustion!

Nikolay Chakarov - 3 years, 7 months ago

Log in to reply

Imam reshenieto -reshih

Nikolay Chakarov - 3 years, 7 months ago
Rocco Dalto
Nov 12, 2017

x + y + z = ( x + y + z ) ( x y + z + y x + z + z x + y ) = x 2 y + z + x y x + z + x z x + y x + y + z = (x + y + z)(\dfrac{x}{y + z} + \dfrac{y}{x + z} + \dfrac{z}{x + y}) = \dfrac{x^2}{y + z} + \dfrac{xy}{x + z} + \dfrac{xz}{x + y} + x y y + z + y 2 x + z + y z x + y + x z y + z + y z x + z + z 2 x + y = + \dfrac{xy}{y + z} + \dfrac{y^2}{x + z} + \dfrac{yz}{x + y} + \dfrac{xz}{y + z} + \dfrac{yz}{x + z} + \dfrac{z^2}{x + y} =

x 2 y + z + y 2 x + z + z 2 x + y + z ( x + y ) x + y + x ( y + z ) y + z + y ( x + z ) x + z = \dfrac{x^2}{y + z} + \dfrac{y^2}{x + z} + \dfrac{z^2}{x + y} + \dfrac{z(x + y)}{x + y} + \dfrac{x(y + z)}{y + z} + \dfrac{y(x + z)}{x + z} =

x 2 y + z + y 2 x + z + z 2 x + y + x + y + z x 2 y + z + y 2 x + z + z 2 x + y = 0 \dfrac{x^2}{y + z} + \dfrac{y^2}{x + z} + \dfrac{z^2}{x + y} + x + y + z \implies \boxed{\dfrac{x^2}{y + z} + \dfrac{y^2}{x + z} + \dfrac{z^2}{x + y} = 0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...