Have You Seen This Inequality Before?

Algebra Level 5

a + b + c a b c n \large \sqrt{a+\sqrt{b+\sqrt c}}\ge\sqrt[n]{abc}

Find the sum of the possible values of positive integers n n such that the above inequality is always true where a , b , c a,b,c are non-negative real numbers.


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

With x > 0 x>0 , choose a = x 2 ; b = x 4 ; c = x 8 a=x^2; b=x^4; c=x^8 , we get: x 1 + 2 x 14 n ( ) x\sqrt{1+\sqrt{2}}\ge x^{\frac{14}{n}}\qquad(*) If n < 14 n<14 , ( ) 1 + 2 x 14 n n (*)\Leftrightarrow \sqrt{1+\sqrt{2}}\ge x^{\frac{14-n}{n}} , this inequality is false where x x is enough large.

If n > 14 n>14 , ( ) x n 14 n 1 + 2 1 (*)\Leftrightarrow x^{\frac{n-14}{n}} \sqrt{1+\sqrt{2}}\ge 1 , this inequality is false where x x is enough small.

We will prove that the initial inequality is true where n = 14 n=14 .

Indeed,

( a + b + c ) 14 \quad\left(\sqrt{a+\sqrt{b+\sqrt c}}\right)^{14}

= ( a + b + c ) 7 = i = 0 7 ( 7 i ) a i ( b + c ) 7 i 7 a ( b + c ) 6 \displaystyle=\left(a+\sqrt{b+\sqrt c}\right)^7=\sum_{i=0}^7 \binom{7}{i} a^i\left(\sqrt{b+\sqrt c}\right)^{7-i}\ge 7a\left(\sqrt{b+\sqrt c}\right)^6

= 7 a ( b + c ) 3 = 7 a i = 0 3 ( 3 i ) b i ( c ) 3 i 21 a b c a b c \displaystyle=7a\left(b+\sqrt c\right)^3=7a\sum_{i=0}^3 \binom{3}{i} b^i\left(\sqrt c\right)^{3-i}\ge 21abc\ge abc

So, n = 14 \boxed{n=14} is only satisfied value.

Why must a : b : c = x 2 : x 4 : x 8 a:b:c = x^2 : x^4 : x^8 ? How do you know this ratio must hold?

Pi Han Goh - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...