\begin{aligned} \sum_{\substack{n>1\\ m>1}}^{\infty} \frac{1}{n^{m}-1} &=\frac{1}{2^2-1} + \frac{1}{2^3-1} + \frac{1}{3^2-1} + \frac{1}{4^2-1} + \cdots \\ &=\frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{15} + \cdots \\\\ &=\, ? \end{aligned}
Note:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, let's prove that ( n 1 + n 2 1 + n 3 1 + ... ) = n − 1 1
( n 1 + n 2 1 + n 3 1 + ... ) = S 1
( n 2 1 + n 3 1 + n 4 1 + ... ) = S 1 − n 1
n ( n 2 1 + n 3 1 + n 4 1 + . . . ) = n ( S 1 − n 1 )
( n 1 + n 2 1 + n 3 1 + ... ) = n ( S 1 ) − 1
S 1 = n ( S 1 ) − 1
1 = n ( S 1 ) − S 1
1 = ( n − 1 ) ( S 1 )
n − 1 1 = S 1
We can now use this to help solve the problem.
1 1 + 2 1 + 3 1 + 4 1 + 5 1 + ... = S 2
1 1 +( 2 1 + 4 1 + 8 1 + ... ) + ( 3 1 + 9 1 + 2 7 1 + ... ) + ( 5 1 + 2 5 1 + 1 2 5 1 + ... ) + ... = S 2
(We would leave out every ( n m 1 + ( n m ) 2 1 + ( n m ) 3 1 + ... ) because we already covered all those terms in ( n 1 + n 2 1 + n 3 1 + ... ). For instance, we would leave out ( 4 1 + 1 6 1 + 6 4 1 + ... ) because ( 2 1 + 4 1 + 8 1 + ... ) already covers all those terms, and we don't want to repeat terms. This way, we cover every term once, and only once.)
We can also write the previous step as this:
1 1 +( 2 1 + 4 1 + 8 1 + ... ) + ( 3 1 + 9 1 + 2 7 1 + ... ) + ( 4 1 + 1 6 1 + 6 4 1 + ... ) + ( 5 1 + 2 5 1 + 1 2 5 1 + ... ) + ... - ( 4 1 + 1 6 1 + 6 4 1 + ... ) - ( 8 1 + 6 4 1 + 2 5 6 1 + ... ) - ( 9 1 + 8 1 1 + 7 2 9 1 + ... ) - ( 1 6 1 + 2 5 6 1 + 4 0 9 6 1 + ... ) - ... = S 2
1 1 +( 1 1 ) + ( 2 1 ) + ( 3 1 ) + ( 4 1 ) + ... - ( 3 1 ) - ( 7 1 ) - ( 8 1 ) - ( 1 5 1 ) - ... = S 2
1 1 + S 2 - ( 3 1 ) - ( 7 1 ) - ( 8 1 ) - ( 1 5 1 ) - ... = S 2
1 1 - ( 3 1 ) - ( 7 1 ) - ( 8 1 ) - ( 1 5 1 ) - ... = 0
1 = ( 3 1 ) + ( 7 1 ) + ( 8 1 ) + ( 1 5 1 ) + ...