Strange numbers

Algebra Level 5

Let a a , b b , and c c be non-zero real numbers such that

( a b + b c + c a ) 3 = a b c ( a + b + c ) 3 . (ab+bc+ca)^3 = abc (a+b+c)^3.

Which of the following is definitely true about a a , b b and c c ?

Relevant wikis :

They are in a geometric sequence They are in a harmonic sequence They are in two or more of the other choices None of the other choices They are in a arithmetic sequence

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Aug 24, 2016

Suppose that a + b + c = λ a+b+c=\lambda .

If λ = 0 \lambda = 0 then a b + a c + b c = 0 ab + ac + bc = 0 as well, and hence a , b , c a,b,c are the roots of the equation X 3 a b c = 0 X^3 - abc = 0 . Since a , b , c a,b,c are all real, this means that a = b = c = 1 3 λ a=b=c=\tfrac13\lambda , and hence a = b = c = 0 a=b=c=0 . Thus we deduce that λ 0 \lambda \neq 0 .

Thus we can write a b + a c + b c = λ α ab + ac + bc = \lambda\alpha for some α \alpha , which implies that a b c = α 3 abc = \alpha^3 . Thus we deduce that a , b , c a,b,c are the roots of the equation 0 = X 3 λ X 2 + λ α X α 3 = ( X α ) ( X 2 + α X + α 2 λ X ) 0 \; = \; X^3 - \lambda X^2 + \lambda\alpha X - \alpha^3 \; =\; (X - \alpha)(X^2 + \alpha X + \alpha^2 - \lambda X) and so, without loss of generality, a = α a = \alpha and b c = α 2 bc = \alpha^2 . Certainly, then, a , b , c a,b,c are in geometric progression.

If we pick a = 1 , b = 2 , c = 4 a=1, b=2, c=4 , then we have a solution of the equation where a , b , c a,b,c are in GP, but are not in AP, nor are they in HP.

The only thing we can say for certain is that the sequence is in GP.

I have fixed the wording.

Sharky Kesa - 4 years, 9 months ago

Log in to reply

Thanks, I will remove my comment in my proof.

Mark Hennings - 4 years, 9 months ago

After taking cube root, we finally get ( A . M . ) ( H . M . ) = ( G . M . ) 2 (A.M.)(H.M.)=(G.M.)^2 . Can we say that for this the sequence must be GP!

A Former Brilliant Member - 4 years, 9 months ago

Log in to reply

If a 2 = b c a^2 = bc then b = a x b=ax , a a and c = a x 1 c=ax^{-1} (for some x x ).The three means of two numbers are in GP. The identity A H = G 2 AH=G^2 does not hold for three or more numbers.

Mark Hennings - 4 years, 9 months ago

@Sharky Kesa i have also uploaded the same question earlier

Deepansh Jindal - 4 years, 9 months ago

@Sharky Kesa from where have got this question

Deepansh Jindal - 4 years, 9 months ago

Log in to reply

One of my old maths exercise books, under the Roots and Coefficients chapter.

Sharky Kesa - 4 years, 9 months ago
Aditya Dhawan
Sep 18, 2016

Alternatively, me may look at the conditions necessary for the roots of a cubic to be in H.P, A.P and G.P respectively and compare it to the condition given.

I f a , b , c a r e t h e r o o t s o f t h e c u b i c p x 3 + q x 2 + r x + s , t h e n t h e g i v e n c o n d i t i o n t r a n s l a t e s t o : q 3 r 3 = p s C o n s i d e r a n y a r b i t a r y c u b i c f ( x ) = p x 3 + q x 2 + r x + s , F o r r o o t s t o b e i n : ( 1 ) G . P : L e t r o o t s b e α m , α , α m . T h e n , α 3 = s p α = s p 3 . S i n c e α i s a r o o t o f t h e c u b i c , f ( α ) = 0 q 3 r 3 = p s ( 2 ) A . P : L e t r o o t s b e α m , α a n d α + m . T h e n , 3 α = q p α = q 3 p S i n c e α i s a r o o t o f t h e c u b i c , f ( α ) = 0 2 q 3 9 p q r + 27 s p 2 = 0 ( 3 ) H . P : C o n s i d e r t h e t r a n s f o r m e d f u n c t i o n g ( x ) = s x 3 + r x 2 + q x + p , w h i c h h a s r o o t s w h i c h a r e t h e r e c i p r o c a l s o f t h o s e o f f ( x ) . I f r o o t s o f f ( x ) m u s t b e i n H . P , t h e n r o o t s o f g ( x ) m u s t b e i n A . P , i m p l y i n g : 2 r 3 9 s q r + 27 p s 2 = 0 If\quad a,b,c\quad are\quad the\quad roots\quad of\quad the\quad cubic\quad p{ x }^{ 3 }+{ qx }^{ 2 }+rx+s,\quad then\quad the\quad given\quad condition\quad translates\quad to:\\ \\ \frac { { q }^{ 3 } }{ { r }^{ 3 } } =\frac { p }{ s } \\ \\ Consider\quad any\quad arbitary\quad cubic\quad f\left( x \right) =p{ x }^{ 3 }+{ qx }^{ 2 }+rx+s,\quad \quad For\quad roots\quad to\quad be\quad in:\\ \\ (1)\quad G.P:\quad Let\quad roots\quad be\quad \frac { \alpha }{ m } ,\alpha ,\quad \alpha m.\quad Then,\quad { \alpha }^{ 3 }=\frac { -s }{ p } \Rightarrow \quad \alpha =\sqrt [ 3 ]{ \frac { -s }{ p } } .\\ Since\quad \alpha \quad is\quad a\quad root\quad of\quad the\quad cubic,\quad f\left( \alpha \right) =0\Rightarrow \quad \boxed { \frac { { q }^{ 3 } }{ { r }^{ 3 } } =\frac { p }{ s } } \\ \\ \\ (2)\quad A.P:\quad Let\quad roots\quad be\quad \alpha -m,\quad \alpha \quad and\quad \alpha +m.\quad Then,\quad 3\alpha =\frac { -q }{ p } \Rightarrow \alpha =\frac { -q }{ 3p } \\ Since\quad \alpha \quad is\quad a\quad root\quad of\quad the\quad cubic,\quad f\left( \alpha \right) =0\Rightarrow \quad \boxed { 2{ q }^{ 3 }-9pqr+27s{ p }^{ 2 }=0 } \\ \\ \\ \\ (3)\quad H.P:\quad Consider\quad the\quad transformed\quad function\quad g\left( x \right) =\quad s{ x }^{ 3 }+{ rx }^{ 2 }+qx+p,\quad \\ which\quad has\quad roots\quad which\quad are\quad the\quad reciprocals\quad of\quad those\quad of\quad f\left( x \right) .\quad If\quad roots\\ of\quad f(x)\quad must\quad be\quad in\quad H.P,\quad then\quad roots\quad of\quad g(x)\quad must\quad be\quad in\quad A.P,\quad implying:\\ \boxed { 2{ r }^{ 3 }-9sqr+27p{ s }^{ 2 }=0 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...