Strange surds!

Algebra Level 3

( 2 + 5 ) 1 3 + ( 2 5 ) 1 3 = ? \large \displaystyle (2+\sqrt{5})^{\frac{1}{3}}+(2-\sqrt{5})^{\frac{1}{3}} =\, ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let A = 2 + 5 3 \color{#E81990}{A}= \sqrt[3]{2+\sqrt{5}} , B = 2 5 3 \color{#EC7300}{B}=\sqrt[3]{2-\sqrt{5}} .
And, S = A + B = 2 + 5 3 + 2 5 3 \Rightarrow\color{#D61F06}{S}=\color{#3D99F6}{A+B}=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}
Now, Cubing both sides.
S 3 = ( A + B ) 3 \Rightarrow \color{#D61F06}{S^3}=\color{#3D99F6}{(A+B)^3}
= A 3 + B 3 + 3 A B ( A + B ) =\color{#3D99F6}{A^3+B^3}+3\color{#20A900}{AB}\color{#3D99F6}{(A+B)}
= A 3 + B 3 + 3 A B S =\color{#3D99F6}{A^3+B^3}+\color{#20A900}{3AB}\color{#D61F06}{S} ...... ( ) (\color{#20A900}{♧}) [ Since , ( A + B ) = S \color{#3D99F6}{(A+B)}=\color{#D61F06}{S} ]
Thus,
A 3 + B 3 = ( 2 + 5 3 ) 3 + ( 2 5 3 ) 3 \Rightarrow \color{#3D99F6}{A^3+B^3}=(\sqrt[3]{2+\sqrt{5}})^{3}+(\sqrt[3]{2-\sqrt{5}})^{3}
= 2 + 5 + 2 5 =2+\sqrt{5}+2-\sqrt{5}
= 4 =\color{#302B94}{4}


3 A B = 3 ( 2 + 5 3 ) ( 2 5 3 ) \Rightarrow \color{#20A900}{3AB}=3(\sqrt[3]{2+\sqrt{5}})(\sqrt[3]{2-\sqrt{5}})
= 3 ( 4 5 3 ) =3(\sqrt[3]{4-5})
= 3 ( 1 3 ) =3(\sqrt[3]{-1})
= 3 × ( 1 ) =3×(-1)
= 3 =\color{#BA33D6}{-3}
Now, putting ( A 3 + B 3 ) = 4 \color{#3D99F6}{(A^3+B^3)}=\color{#302B94}{4} and ( 3 A B ) = 3 \color{#20A900}{(3AB)}=\color{#BA33D6}{-3} in ( ) (\color{#20A900}{♧}) .
S 3 = 4 3 S \Rightarrow \color{#D61F06}{S^3}=\color{#302B94}{4}\color{#BA33D6}{-3}\color{#D61F06}{S}
S 3 + 3 S 4 = 0 \color{#D61F06}{S^3}\color{#BA33D6}{+3}\color{#D61F06}{S}\color{#302B94}{-4}=0
( S 1 ) ( S 2 + S + 4 ) = 0 (\color{#D61F06}{S}-1)(\color{#D61F06}{S^2}+\color{#D61F06}{S}\color{#302B94}{+4})=0
S 1 = 0 \color{#D61F06}{S}-1=0
S = 1 \color{#D61F06}{S}=\color{#624F41}{\boxed{1}}

2 + 5 3 + 2 5 3 = 1 . \Rightarrow \sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}}=\color{#624F41}{\boxed{1}}.


Note : There is a possibilty that ( S 2 + S + 4 = 0 ) (\color{#D61F06}{S^2}+\color{#D61F06}{S}\color{#302B94}{+4}=0) ,but this is not possible because its roots are non-real complex numbers.And the surds given is real.

How did = A 3 + B 3 + 3 ( A + B ) =\color{#3D99F6}{A^3+B^3}+3\color{#3D99F6}{(A+B)} Turn to = A 3 + B 3 + 3 A B S =\color{#3D99F6}{A^3+B^3}+\color{#20A900}{3AB}\color{#D61F06}{S} ?

Viki Zeta - 4 years, 9 months ago

Log in to reply

There was a typo.Thanks!

A Former Brilliant Member - 4 years, 9 months ago

Let x = ( 2 + 5 ) 1 3 + ( 2 5 ) 1 3 x ( 2 + 5 ) 1 3 ( 2 5 ) 1 3 = 0 \displaystyle x=(2+\sqrt{5})^{\frac{1}{3}}+(2-\sqrt{5})^{\frac{1}{3}} \implies x-(2+\sqrt{5})^{\frac{1}{3}}-(2-\sqrt{5})^{\frac{1}{3}}=0

So we have x 3 ( 2 + 5 ) ( 2 5 ) = 3 x ( 2 2 5 ) 1 3 x 3 + 3 x 4 = 0 \displaystyle x^3-(2+\sqrt{5})-(2-\sqrt{5}) =3x(2^2-5)^{\frac{1}{3}} \implies x^3+3x-4=0 , Since x = 1 x=1 is a root of the equation and the other roots are non-real as x 2 + x + 4 = 0 x^2+x+4=0 has no real solutions it follows that 1 = ( 2 + 5 ) 1 3 + ( 2 5 ) 1 3 1=(2+\sqrt{5})^{\frac{1}{3}}+(2-\sqrt{5})^{\frac{1}{3}}

Chew-Seong Cheong
Sep 15, 2016

Since integer solution is expected, we can assume 2 ± 5 = ( a ± b 5 ) 3 2 \pm \sqrt 5 = (a \pm b\sqrt 5)^3 , then we have 2 + 5 3 + 2 5 3 \sqrt[3]{2 + \sqrt 5} + \sqrt[3]{2 - \sqrt 5} = ( a + b 5 ) 3 3 + ( a b 5 ) 3 3 = \sqrt[3]{(a + b\sqrt 5)^3} + \sqrt[3]{(a - b\sqrt 5)^3} = a + b 5 + a b 5 = 2 a = a + b\sqrt 5 + a - b\sqrt 5 = 2a . We have:

( a + b 5 ) 3 = 2 + 5 a 3 + 3 a 2 b 5 + 15 a b 2 + 5 b 3 5 = 2 + 5 \begin{aligned} (a + b\sqrt 5)^3 & = 2 + \sqrt 5 \\ a^3 + 3a^2b\sqrt 5 + 15ab^2 + 5b^3\sqrt 5 & = 2 + \sqrt 5 \end{aligned}

Equating the rational and irrational parts we have: { a 3 + 15 a b 2 = 2 3 a 2 b + 5 b 3 = 1 a = b = 1 2 \begin{cases} a^3 + 15ab^2 = 2 \\ 3a^2b + 5b^3 = 1 \end{cases} \implies a = b = \dfrac 12 .

2 + 5 3 + 2 5 3 = 2 a = 2 × 1 2 = 1 \implies \sqrt[3]{2 + \sqrt 5} + \sqrt[3]{2 - \sqrt 5} = 2a = 2 \times \dfrac 12 = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...