Strange triangle I

Geometry Level 4

In A B C \triangle ABC with A B = c AB=c , A C = b AC=b and B C = a BC=a , where A = 5 0 \angle A=50^{\circ} and B = 10 0 \angle B=100^{\circ} , which of the following expressions hold?

1. a 3 + c 3 = 3 a c 2 2. a 3 + c 3 = 3 a 2 c 3. 3 a 3 + c 3 = 3 a c 2 4. 3 a 3 + c 3 = 3 a 2 c 5. 3 a 3 + b 3 = 3 a b 2 6. 3 b c 2 + 3 c 3 = b 3 1. \quad a^3+c^3=3ac^2\\ 2. \quad a^3+c^3=3a^2c\\ 3. \quad 3a^3+c^3=3ac^2\\ 4. \quad 3a^3+c^3=3a^2c\\ 5. \quad 3a^3+b^3=3ab^2\\ 6. \quad 3bc^2+\sqrt{3}c^3=b^3

Only 6 1 and 6 Only 4 Only 1 2 and 5 3 and 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First calculate C \angle C , which is simply C = 18 0 A B = 3 0 \angle C=180^{\circ}-\angle A-\angle B=30^{\circ}

By Law of Sines on A B C \triangle ABC we get:

a sin 5 0 = c sin 3 0 sin 5 0 = a 2 c \dfrac{a}{\sin 50^{\circ}}=\dfrac{c}{\sin 30^{\circ}} \\ \sin 50^{\circ}=\dfrac{a}{2c}

Now, in the identity of triple angle sin 3 θ = 3 sin θ 4 sin 3 θ \sin 3\theta=3\sin \theta-4\sin^3 \theta , put θ = 5 0 \theta=50^{\circ} and rearrange:

sin 15 0 = 3 sin 5 0 4 sin 3 5 0 1 2 = 3 sin 5 0 4 sin 3 5 0 1 = 6 sin 5 0 8 sin 3 5 0 1 = 6 ( a 2 c ) 8 ( a 2 c ) 3 1 = 3 a c a 3 c 3 c 3 = 3 a c 2 a 3 a 3 + c 3 = 3 a c 2 \sin 150^{\circ}=3\sin 50^{\circ}-4\sin^3 50^{\circ} \\ \dfrac{1}{2}=3\sin 50^{\circ}-4\sin^3 50^{\circ} \\ 1=6\sin 50^{\circ}-8\sin^3 50^{\circ} \\ 1=6\left(\dfrac{a}{2c}\right)-8\left(\dfrac{a}{2c}\right)^3 \\ 1=\dfrac{3a}{c}-\dfrac{a^3}{c^3} \\ c^3=3ac^2-a^3 \\ \boxed{a^3+c^3=3ac^2}

Similarly, by Law of Sines we get:

b sin 10 0 = c sin 3 0 sin 8 0 = b 2 c \dfrac{b}{\sin 100^{\circ}}=\dfrac{c}{\sin 30^{\circ}} \\ \sin 80^{\circ}=\dfrac{b}{2c}

Apply again the identity of triple angle, this time with θ = 80 ° \theta=80° :

sin 24 0 = 3 sin 8 0 4 sin 3 8 0 3 2 = 3 sin 8 0 4 sin 3 8 0 3 = 6 sin 8 0 8 sin 3 8 0 3 = 6 ( b 2 c ) 8 ( b 2 c ) 3 3 = 3 b c b 3 c 3 3 c 3 = 3 b c 2 b 3 3 b c 2 + 3 c 3 = b 3 \sin 240^{\circ}=3\sin 80^{\circ}-4\sin^3 80^{\circ} \\ -\dfrac{\sqrt{3}}{2}=3\sin 80^{\circ}-4\sin^3 80^{\circ} \\ -\sqrt{3}=6\sin 80^{\circ}-8\sin^3 80^{\circ} \\ -\sqrt{3}=6\left(\dfrac{b}{2c}\right)-8\left(\dfrac{b}{2c}\right)^3 \\ -\sqrt{3}=\dfrac{3b}{c}-\dfrac{b^3}{c^3} \\ -\sqrt{3}c^3=3bc^2-b^3 \\\boxed{3bc^2+\sqrt{3}c^3=b^3}

Out of the box way of looking at the problem. Though since Sin Law is used, the solution is straight forward without going for expanding Sin cube..

Niranjan Khanderia - 3 years ago

S i n L a w : a S i n ( 50 ) = b S i n ( 100 ) = c S i n ( 30 ) . c = a 2 S i n ( 50 ) . . . . . . . . . ( A ) D i v i d i n g [ 1. ] b y a 3 a n d s u b s t i t u t i n g f r o m ( A ) , w e g e t L H S = R H S . S o [ 1. ] i s a s o l u t i o n . A g a i n b = 2 c S i n 100........ ( B ) D i v i d i n g [ 6. ] b y c 3 a n d s u b s t i t u t i n g f r o m ( B ) , w e g e t L H S = R H S . S o [ 6. ] i s a s o l u t i o n . S o 1 a n d 6 a r e t h e s o l u t i o n s . Sin~Law:- ~~~\dfrac a {Sin(50)}=\dfrac b {Sin(100)}=\dfrac c {Sin(30)}.\\ \therefore~c=\dfrac a {2*Sin(50)}.........(A)\\ Dividing~[ 1. ]~ by~a^3~and~substituting~from~(A),~we~get~LHS=RHS.~~~So~[ 1. ]~is~a~solution.\\ Again~b=2*c*Sin100........(B)\\ Dividing~[ 6. ]~ by~c^3~and~substituting~from~(B),~we~get~LHS=RHS.~~~So~[ 6. ]~is~a~solution.\\ So~~~ 1~~and~~6~~~are~~~the~~ solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...