Strange triangle II

Geometry Level 4

In A B C \triangle ABC with A B = c AB=c , A C = b AC=b and B C = a BC=a , where A = 4 0 \angle A=40^{\circ} and C = 8 0 \angle C=80^{\circ} , which of the following expressions hold?

3 a 3 + b 3 = 3 a 2 b 3a^3+b^3=3a^2b a 3 + 3 b 3 = 3 a 2 b a^3+3b^3=3a^2b 3 c 3 + b 3 = 3 c 2 b 3c^3+b^3=3c^2b a 3 + 3 b 3 = 3 a b 2 a^3+3b^3=3ab^2 3 a 3 + b 3 = 3 a b 2 3a^3+b^3=3ab^2 3 c 3 + b 3 = 3 c b 2 3c^3+b^3=3cb^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First calculate B \angle B , which is simply B = 18 0 A C = 6 0 \angle B=180^{\circ}-\angle A-\angle C=60^{\circ}

By Law of Sines on A B C \triangle ABC we get:

a sin 4 0 = b sin 6 0 sin 4 0 = 3 a 2 b \dfrac{a}{\sin 40^{\circ}}=\dfrac{b}{\sin 60^{\circ}} \\ \sin 40^{\circ}=\dfrac{\sqrt{3} a}{2b}

Now, in the identity of triple angle sin 3 θ = 3 sin θ 4 sin 3 θ \sin 3\theta=3\sin \theta-4\sin^3 \theta , put θ = 4 0 \theta=40^{\circ} and rearrange:

sin 12 0 = 3 sin 4 0 4 sin 3 4 0 3 2 = 3 sin 4 0 4 sin 3 4 0 3 = 6 sin 4 0 8 sin 3 4 0 3 = 6 ( 3 a 2 b ) 8 ( 3 a 2 b ) 3 1 = 3 a b 3 a 3 b 3 b 3 = 3 a b 2 3 a 3 3 a 3 + b 3 = 3 a b 2 \sin 120^{\circ}=3\sin 40^{\circ}-4\sin^3 40^{\circ} \\ \dfrac{\sqrt{3}}{2}=3\sin 40^{\circ}-4\sin^3 40^{\circ} \\ \sqrt{3}=6\sin 40^{\circ}-8\sin^3 40^{\circ} \\ \sqrt{3}=6\left(\dfrac{\sqrt{3} a}{2b}\right)-8\left(\dfrac{\sqrt{3} a}{2b}\right)^3 \\ 1=\dfrac{3a}{b}-\dfrac{3a^3}{b^3} \\ b^3=3ab^2-3a^3 \\ \boxed{3a^3+b^3=3ab^2}

If we apply Law of Sines on sides b b and c c , we don't get any of the other options.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...