Stranger region

Calculus Level 4

What is the area of the region defined by the following set of inequalities?

( 1 ) 1 < x y < 1 ( 2 ) 1 < x 2 y 2 < 1 \begin{array}{cc} (1) &-1 < xy < 1 \\ (2) &-1 < x^2-y^2 < 1 \end{array}

If the area is A A , give 100 A \left\lfloor 100A \right\rfloor .


The answer is 481.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Lee
Dec 21, 2013

Define u = x y u = x y and v = x 2 y 2 v = x^2-y^2 . Then, du = y dx + x dy \text{du} = y \text{dx} + x \text{dy} and dv = 2 x dx 2 y dy \text{dv} = 2x \text{dx} - 2y \text{dy} . Solve this system of equations for dx \text{dx} and dy \text{dy} to get dx = y x 2 + y 2 du + x 2 x 2 + 2 y 2 dv \text{dx} = \frac{y}{x^2+y^2} \text{du} + \frac{x}{2x^2+2y^2} \text{dv} and dy = x x 2 + y 2 du y 2 x 2 + 2 y 2 dv \text{dy} = \frac{x}{x^2+y^2} \text{du} - \frac{y}{2x^2+2y^2} \text{dv} . Thus, dA = dx dy = ( y x 2 + y 2 du + x 2 x 2 + 2 y 2 dv ) ( x x 2 + y 2 du y 2 x 2 + 2 y 2 dv ) = ( x 2 2 ( x 2 + y 2 ) 2 ) du dv + ( y 2 2 ( x 2 + y 2 ) 2 ) dv du = ( x 2 2 ( x 2 + y 2 ) 2 y 2 2 ( x 2 + y 2 ) 2 ) du dv = ( 1 2 ( x 2 + y 2 ) ) du dv \text{dA} = \text{dx} \wedge \text{dy} = \left(\frac{y}{x^2+y^2} \text{du} + \frac{x}{2x^2+2y^2} \text{dv}\right) \wedge \left(\frac{x}{x^2+y^2} \text{du} - \frac{y}{2x^2+2y^2} \text{dv}\right) = \left(-\frac{x^2}{2 \left(x^2+y^2\right)^2}\right) \text{du} \wedge \text{dv} + \left(\frac{y^2}{2 \left(x^2+y^2\right)^2}\right) \text{dv} \wedge \text{du} = \left(-\frac{x^2}{2 \left(x^2+y^2\right)^2}-\frac{y^2}{2 \left(x^2+y^2\right)^2}\right) \text{du} \wedge \text{dv} = \left(-\frac{1}{2 \left(x^2+y^2\right)}\right) \text{du} \wedge \text{dv} . Call f = 1 2 ( x 2 + y 2 ) f = -\frac{1}{2 \left(x^2+y^2\right)} , and recall that u = x y u = xy and v = x 2 y 2 v = x^2-y^2 . Observe then that f 2 = 1 4 ( x 4 + 2 x 2 y 2 + y 4 ) = 1 4 ( 4 u 2 + v 2 ) = 1 16 u 2 + 4 v 2 f^2 = \frac{1}{4 (x^4+2x^2 y^2 + y^4)} = \frac{1}{4 (4 u^2 + v^2)} = \frac{1}{16u^2+4v^2} . Thus, f = ± 1 16 u 2 + 4 v 2 f = \pm \frac{1}{\sqrt{16u^2+4v^2}} , where each solution for f f corresponds to half of the problem region, as the two are symmetric over the x x -axis. So, our area is dA = dx dy = 2 1 1 1 1 1 16 u 2 + 4 v 2 du dv = 1 4 2 2 4 4 1 a 2 + b 2 da db = log ( 123 + 55 5 2 ) 4.812 100 A = 481 \displaystyle \iint \text{dA} = \iint \text{dx} \wedge \text{dy} = 2 \int _{-1}^1\int _{-1}^1\frac{1}{\sqrt{16 u^2+4 v^2}} \text{du} \, \text{dv} = \frac{1}{4} \int_{-2}^{2} \int_{-4}^{4} \frac{1}{\sqrt{a^2+b^2}} \text{da} \, \text{db} = \log \left(\frac{123+55 \sqrt{5}}{2}\right) \approx 4.812 \Rightarrow \left\lfloor 100A \right\rfloor = \boxed{481} .

I apologize, the symmetry of the region is not over the x x -axis, but over the line y = x y = x .

Michael Lee - 7 years, 5 months ago

I think the best way to approach this is through polar coordinates.

We need to find A O B \angle AOB and A O C \angle AOC .

To find it let us find the coordinates where both the curves meet.

We have x y = 1 xy=1

So y = 1 x y=\frac{1}{x}

So putting it in x 2 y 2 = 1 x^2-y^2 = 1

we have

x 4 x 2 1 = 0 x^4-x^2-1 = 0

So x = 1 + 5 2 = a ( s a y ) x=\sqrt{\frac{1+\sqrt{5}}{2}} =\sqrt{a}(say)

So y = 2 1 + 5 = 1 a y=\sqrt{\frac{2}{1+\sqrt{5}}} = \frac{1}{\sqrt{a}}

So A O B = arctan ( 1 a ) \angle AOB = \arctan(\frac{1}{a})

And A O C = arctan ( a ) \angle AOC = \arctan(a)

There are 8 8 total regions like A O B AOB and 4 total regions which are like B O C BOC

For x 2 y 2 = 1 x^2-y^2 = 1 using polar coordinates we have

r 2 = 1 c o s ( 2 θ ) r^{2} = \frac{1}{cos(2\theta)}

For x y = 1 xy = 1 using polar coordinates we have:-

r 2 = 2 cosec ( 2 θ ) r^{2} = 2\cosec(2\theta)

Area of A O B AOB = 0 arctan ( 1 a ) 1 2 c o s ( 2 θ ) \Large \int_{0}^{\arctan(\frac{1}{a})} \frac{1}{2cos(2\theta)}

There are 8 such regions so total area of them is 0 arctan ( 1 a ) 4 s e c ( 2 θ ) d θ \Large \int_{0}^{\arctan(\frac{1}{a})} 4sec(2\theta) d\theta

Area of B O C BOC = arctan ( 1 a ) arctan ( a ) cosec ( 2 θ ) d θ \Large \int_{\arctan(\frac{1}{a})}^{\arctan(a)} \cosec(2\theta) d\theta

There are 4 such regions so their area is given by 4 arctan ( 1 a ) arctan ( a ) cosec ( 2 θ ) d θ \Large 4\int_{\arctan(\frac{1}{a})}^{\arctan(a)} \cosec(2\theta) d\theta

Now indefinite integrals of cosec ( x ) \cosec(x) and sec ( x ) \sec(x) are well known.

Using them and plugging in the limits we get the total area as

0 arctan ( 1 a ) 4 s e c ( 2 θ ) d θ + 4 arctan ( 1 a ) arctan ( a ) cosec ( 2 θ ) d θ \Large \int_{0}^{\arctan(\frac{1}{a})} 4sec(2\theta) d\theta + \Large 4\int_{\arctan(\frac{1}{a})}^{\arctan(a)} \cosec(2\theta) d\theta

We get our answer as ln ( 123 + 55 5 2 ) \ln(\frac{123 + 55\sqrt{5}}{2})

(Note that I have used the formula for area in polar coordinates : Area = r 2 2 d θ \int \frac{r^{2}}{2} d\theta

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...