Stubborn Odd Binomial Coefficient

Level pending

IF (1+x)^{n} = C {0} + C {1}x + C {2}x^{2} + C {3}x^{3} + ........ + C_{n}x^{n}

Such That C {0}, C {1}, C {3}, C {4}, .........., C_{n} Denotes The Binomial Coefficients

Than The Value Of The Expression:

C {1} - 3C {3} + 5C {5} - 7C {7} .......... 25C_{25}


The answer is 102400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Fischer
Sep 24, 2014

f ( x ) = ( 1 + x ) 25 = C 0 + C 1 x + C 2 x 2 + . . . + C 25 x 25 f(x) = (1+x)^{25} = C_0 + C_1 x + C_2 x^2 + ... + C_{25} x^{25} and g ( x ) = ( 1 x ) 25 = C 0 C 1 x + C 2 x 2 . . . C 25 x 25 g(x) = (1-x)^{25} = C_0 - C_1 x + C_2 x^2 - ... - C_{25} x^{25}

h ( x ) = f ( x ) g ( x ) = ( 1 + x ) 25 ( 1 x ) 25 = 2 ( C 1 x + C 3 x 3 . . . C 25 x 25 ) h(x) = f(x)-g(x) = (1+x)^{25} - (1-x)^{25} = 2( C_1 x + C_3 x^3 - ... - C_{25} x^{25} )

then differentiating w.r.t. x,

h ( x ) = f ( x ) g ( x ) = 25 ( 1 + x ) 24 + 25 ( 1 x ) 24 = 2 ( C 1 + 3 C 3 x 2 . . . 25 C 25 x 24 ) h'(x) = f'(x)-g'(x) = 25(1+x)^{24} + 25(1-x)^{24} = 2( C_1 + 3 C_3 x^2 - ... - 25 C_{25} x^{24} )

Evaluate h'(x) at x=i where i = 1 . . . i=\sqrt {-1} ...

h'(i) = f'(i) - g'(i) = 25 ( 1 + i ) 24 + 25 ( 1 i ) 24 25(1+i)^{24} + 25(1-i)^{24} = 2 ( C 1 + 3 C 3 i 2 . . . 25 C 25 i 24 ) 2( C_1 + 3 C_3 i^2 - ... - 25 C_{25} i^{24} ) = 2 ( C 1 3 C 3 + . . . 25 C 25 ) = 2( C_1 - 3 C_3 + ... - 25 C_{25} )

Since:

25 ( 1 + i ) 24 25(1+i)^{24} = 25 [ 2 ( cos ( π / 4 ) + i sin ( π / 4 ) ) ] 24 = 25 [ \sqrt 2 ( \cos{(\pi/4)} + i \sin{(\pi/4))} ]^{24} = 25 ( 2 12 ) [ cos ( 6 π ) + i sin ( 6 π ) ] = 102400 = 25 (2^{12}) [ \cos{(6\pi)} + i \sin{(6\pi)} ] = 102400

and

25 ( 1 i ) 24 25(1-i)^{24} = 25 [ 2 ( cos ( π / 4 ) + i sin ( π / 4 ) ) ] 24 = 25 [ \sqrt 2 ( \cos{(-\pi/4)} + i \sin{(-\pi/4))} ]^{24} = 25 ( 2 12 ) [ cos ( 6 π ) + i sin ( 6 π ) ] = 102400 = 25 (2^{12}) [ \cos{(-6\pi)} + i \sin{(-6\pi)} ] = 102400

So

h'(i) = 102400 + 102400

C 1 3 C 3 + 5 C 5 . . . 25 C 2 5 = h ( i ) / 2 = 102 , 400 C_1 - 3 C_3 + 5 C_5 -... - 25 C_25 = h'(i)/2 = \boxed {102,400}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...