Students Standing in Circle!

4 girls and 8 boys are standing together. In how many ways can a 7- person committee be selected from the group if at least 2 girls must be included?


The answer is 672.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Combinations without Repetition - Basic

We can choose 2,3 or 4 girls and 5,4 or 3 boys. Number of ways = ( 4 2 ) × ( 8 5 ) + ( 4 3 ) × ( 8 4 ) + ( 4 4 ) × ( 8 3 ) = 4 ! 2 ! × 2 ! × 8 ! 3 ! × 5 ! + 4 ! 3 ! × 8 ! 4 ! × 4 ! + 4 ! 4 ! × 8 ! 3 ! × 5 ! = 336 + 280 + 56 = 672 . \large \displaystyle \text{We can choose 2,3 or 4 girls and 5,4 or 3 boys.}\\ \large \displaystyle \text{Number of ways } = \dbinom{4}{2} \times \dbinom{8}{5} + \dbinom{4}{3} \times \dbinom{8}{4} + \dbinom{4}{4} \times \dbinom{8}{3}\\ \large \displaystyle = \frac{4!}{2! \times 2!} \times \frac{8!}{3! \times 5!} + \frac{4!}{3!} \times \frac{8!}{4! \times 4!} + \frac{4!}{4!} \times \frac{8!}{3! \times 5!}\\ \large \displaystyle = 336 + 280 + 56 = \color{#3D99F6}{\boxed{672}}.

Nice Solution.. +1

Sabhrant Sachan - 5 years, 1 month ago

Log in to reply

Thanks! ¨ \Large \ddot\smile

Samara Simha Reddy - 5 years, 1 month ago

Solved it the same way. :) (・ิω・ิ) (+1)

Ashish Menon - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...