Stuffed with everything I could think of

Calculus Level 2

f ( x ) = s i n 5 x l n ( s i n ( x ) ) s i n ( x ) s i n ( x ) + c o s ( x ) n k = 1 10000 k { k = 1 10000 k } 8 15 π 2 l n ( 1 2 ) π 4 \large{f\left( x \right) =\left| \begin{matrix} { sin }^{ 5 }x\quad & ln\left( sin(x) \right) \quad & \frac { \sqrt { sin(x) } }{ \sqrt { sin(x) } +\sqrt { cos(x) } } \\ \left\lceil n \right\rceil & \left\lfloor \sum _{ k=1 }^{ 10000 }{ k } \right\rfloor & \left\{ \prod _{ k=1 }^{ 10000 }{ k } \right\} \\ \frac { 8 }{ 15 } & \frac { \pi }{ 2 } ln\left( \frac { 1 }{ 2 } \right) & \frac { \pi }{ 4 } \end{matrix} \right| }

{ 0 π 2 f ( x ) d x } = ? \large{\therefore \quad \quad \quad \left\{ \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right) } dx \right\} =?}

. a n d . \left\lceil . \right\rceil \quad and\quad \left\lfloor . \right\rfloor represents the ceiling and floor function respectively.

{ . } \left\{ . \right\} is the fractional part function.

a n d \sum { } \quad and\quad \prod { } are sum and product functions respectively.


This is a problem of my set JEE Calculus .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

0 π 2 f ( x ) d x = 0 π 2 s i n 5 x d x 0 π 2 l n ( s i n ( x ) ) d x 0 π 2 s i n ( x ) s i n ( x ) + c o s ( x ) d x n k = 1 10000 k { k = 1 10000 k } 8 15 π 2 l n ( 1 2 ) π 4 \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right) } dx=\left| \begin{matrix} \int _{ 0 }^{ \frac { \pi }{ 2 } }{ { sin }^{ 5 }x } dx\quad & -\int _{ 0 }^{ \frac { \pi }{ 2 } }{ ln\left( sin(x) \right) } dx\quad & \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sqrt { sin(x) } }{ \sqrt { sin(x) } +\sqrt { cos(x) } } } dx \\ \left\lceil n \right\rceil & \left\lfloor \sum _{ k=1 }^{ 10000 }{ k } \right\rfloor & \left\{ \prod _{ k=1 }^{ 10000 }{ k } \right\} \\ \frac { 8 }{ 15 } & \frac { \pi }{ 2 } ln\left( \frac { 1 }{ 2 } \right) & \frac { \pi }{ 4 } \end{matrix} \right|

= 8 15 π 2 l n ( 2 ) π 4 n k = 1 10000 k { k = 1 10000 k } 8 15 π 2 l n ( 1 2 ) π 4 =\left| \begin{matrix} \frac { 8 }{ 15 } \quad & -\frac { \pi }{ 2 } ln\left( 2 \right) \quad & \frac { \pi }{ 4 } \\ \left\lceil n \right\rceil & \left\lfloor \sum _{ k=1 }^{ 10000 }{ k } \right\rfloor & \left\{ \prod _{ k=1 }^{ 10000 }{ k } \right\} \\ \frac { 8 }{ 15 } & \frac { \pi }{ 2 } ln\left( \frac { 1 }{ 2 } \right) & \frac { \pi }{ 4 } \end{matrix} \right|

= 8 15 π 2 l n ( 1 2 ) π 4 n k = 1 10000 k { k = 1 10000 k } 8 15 π 2 l n ( 1 2 ) π 4 =\left| \begin{matrix} \frac { 8 }{ 15 } \quad & \frac { \pi }{ 2 } ln\left( \frac { 1 }{ 2 } \right) \quad & \frac { \pi }{ 4 } \\ \left\lceil n \right\rceil & \left\lfloor \sum _{ k=1 }^{ 10000 }{ k } \right\rfloor & \left\{ \prod _{ k=1 }^{ 10000 }{ k } \right\} \\ \frac { 8 }{ 15 } & \frac { \pi }{ 2 } ln\left( \frac { 1 }{ 2 } \right) & \frac { \pi }{ 4 } \end{matrix} \right|

S i n c e R 1 a n d R 3 a r e i d e n t i c a l . Since\quad R_{ 1 }\quad and\quad R_{ 3 }\quad are\quad identical.

0 π 2 f ( x ) d x = 0 \therefore \quad \quad \quad \quad \quad \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right) } dx\quad =\quad 0

{ 0 π 2 f ( x ) d x } = 0 \Rightarrow \quad \quad \quad \quad \quad \left\{ \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right) } dx \right\} \quad =\quad \boxed{0}

Haha ! Looked pretty scary at the first glance. ! : ) :)

Keshav Tiwari - 6 years, 1 month ago

Log in to reply

Haha.. That was the main objective.. :P ;)

Harshvardhan Mehta - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...