Stumped.

Calculus Level 4

A function f f is defined by f ( x ) = x m x 1 n f(x) = |x|^m \cdot |x-1|^n for all real numbers x x , where m m and n n are positive integers. What is the local maximum of this function?

Notation: |\cdot| denotes the absolute value function .

( m n ) m n ( m + n ) m + n \frac {(mn)^{mn}}{(m+n)^{m+n}} m m n n ( m + n ) m + n \frac {m^m n^n}{( m+n)^{m+n}} 1 m n n m m^n n^m

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note that f ( x ) 0 f(x) \ge 0 for all x x , f ( ) = f ( ) = f(-\infty) = f(\infty) = \infty and f ( 0 ) = f ( 1 ) = 0 f(0) = f(1) = 0 . Therefore, the local maximum must be within x ( 0 , 1 ) x \in (0,1) . Then we have:

f ( x ) = x m x 1 n For x ( 0 , 1 ) = x m ( 1 x ) n Differentiate both sides w.r.t. x f ( x ) = m x m 1 ( 1 x ) n n x m ( 1 x ) n 1 Putting f ( x ) = 0 m x m 1 ( 1 x ) n = n x m ( 1 x ) n 1 For x 0 m ( 1 x ) = n x x = m m + n max ( f ( x ) ) = f ( m m + n ) = ( m m + n ) m ( 1 m m + n ) n = m m n n ( m + n ) m + n \begin{aligned} f(x) & = |x|^m \cdot |x-1|^n & \small \color{#3D99F6} \text{For }x \in (0, 1) \\ & = x^m(1-x)^n & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ f'(x) & = mx^{m-1} (1-x)^n - n x^m(1-x)^{n-1} & \small \color{#3D99F6} \text{Putting }f'(x) = 0 \\ mx^{m-1} (1-x)^n & = n x^m(1-x)^{n-1} & \small \color{#3D99F6} \text{For }x \ne 0 \\ m(1-x) & = nx \\ \implies x & = \frac m{m+n} \\ \implies \max (f(x)) & = f\left(\frac m{m+n}\right) \\ & = \left(\frac m{m+n} \right)^m \left(1-\frac m{m+n} \right)^n \\ & = \boxed{ \dfrac {m^mn^n}{(m+n)^{m+n}} } \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...