We know that ∫ 0 ∞ e − t d t = 1 and ∫ 0 ∞ e − t 2 d t = 2 π . What is the value of ∫ 0 ∞ e − t 1 / 5 d t ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
What a different way of writing 5!...
By computing definite integral for ∫ 0 ∞ e − t 5 1 d t
∫ 0 ∞ e − t 5 1 d t = 5 ( 4 ( − 3 ( e − t 5 1 t 5 1 − e − t 5 1 ) − e − t 5 1 t 5 1 ) − e − t 5 1 t 5 1 ) + C Indefinite = [ 5 ( 4 ( − 3 ( e − t 5 1 t 5 1 − e − t 5 1 ) − e − t 5 1 t 5 1 ) − e − t 5 1 t 5 1 ) ] 0 ∞ = 1 2 0 □
You can use @Chew-Seong Cheong 's method by using gamma function Γ ( x ) .
ADIOS muchacha!!!
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 ∞ e − t 5 1 d t Let x = t 5 1 ⟹ x 5 = t ⟹ 5 x 4 d x = d t = ∫ 0 ∞ 5 x 4 e − x d x = 5 ∫ 0 ∞ x 5 − 1 e − x d x = 5 Γ ( 5 ) = 5 ⋅ 4 ! = 1 2 0