Change of Variables and Integration by Parts

Calculus Level 4

We know that 0 e t d t = 1 \displaystyle \int_0^\infty e^{-t} \, dt = 1 and 0 e t 2 d t = π 2 \large\displaystyle \int_0^\infty e^{-t^2} \, dt =\dfrac{\sqrt \pi}2 . What is the value of 0 e t 1 / 5 d t \large \displaystyle \int_0^\infty e^{-t^{1/5}} \, dt ?

0.918 1 6 5 \frac65 123 120

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 19, 2016

I = 0 e t 1 5 d t Let x = t 1 5 x 5 = t 5 x 4 d x = d t = 0 5 x 4 e x d x = 5 0 x 5 1 e x d x = 5 Γ ( 5 ) = 5 4 ! = 120 \begin{aligned} I & = \int_0^\infty e^{-\color{#3D99F6}{t^\frac{1}{5}}} dt \quad \quad \small \color{#3D99F6}{\text{Let }x = t^\frac{1}{5} \implies x^5 = t \implies 5x^4 \ dx = dt} \\ & = \int_0^\infty 5x^4 e^{-x} \ dx \\ & = 5 \int_0^\infty x^{\color{#3D99F6}{5}-1} e^{-x} \ dx \\ & = 5 \Gamma (\color{#3D99F6}{5}) = 5 \cdot 4! = \boxed{120} \end{aligned}

What a different way of writing 5!...

Paulo Filho - 5 years ago

By computing definite integral for 0 e t 1 5 d t \int_{0}^{\infty} e^{-t^{\frac{1}{5}}}\,dt

0 e t 1 5 d t = 5 ( 4 ( 3 ( e t 1 5 t 1 5 e t 1 5 ) e t 1 5 t 1 5 ) e t 1 5 t 1 5 ) + C Indefinite = [ 5 ( 4 ( 3 ( e t 1 5 t 1 5 e t 1 5 ) e t 1 5 t 1 5 ) e t 1 5 t 1 5 ) ] 0 = 120 \begin{aligned} \int_{0}^{\infty} e^{-t^{\frac{1}{5}}}\,dt &= 5\left( 4\left( -3\left( e^{-t^{\frac{1}{5}}}t^{\frac{1}{5}}-e^{-t^{\frac{1}{5}}} \right) -e^{-t^{\frac{1}{5}}}t^{\frac{1}{5}} \right)-e^{-t^{\frac{1}{5}}}t^{\frac{1}{5}} \right)+\ce{C} \quad\quad\quad{\text{Indefinite}} \\&=\left[5\left( 4\left( -3\left( e^{-t^{\frac{1}{5}}}t^{\frac{1}{5}}-e^{-t^{\frac{1}{5}}} \right) -e^{-t^{\frac{1}{5}}}t^{\frac{1}{5}} \right)-e^{-t^{\frac{1}{5}}}t^{\frac{1}{5}} \right) \right]_{0}^{\infty} \\&=120 \square \end{aligned}


You can use @Chew-Seong Cheong 's method by using gamma function Γ ( x ) \Gamma(x) .

ADIOS muchacha!!! \LARGE \text{ADIOS muchacha!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...