Are Trigonometric Substitutions Needed?

Algebra Level 4

Let f ( x ) = log ( 1 + x 1 x ) f(x) = \log \left( \dfrac{1+x}{1-x} \right) , where 1 < x < 1 -1<x<1 . Which of the following choices is equal to f ( 3 x + x 3 1 + 3 x 2 ) f ( 2 x 1 + x 2 ) f \left( \dfrac{3x+x^3}{1+3x^2} \right) - f\left( \dfrac{2x}{1+x^2}\right) ?

[ f ( x ) ] 3 [f(x)]^3 f ( x ) -f(x) [ f ( x ) ] 2 [f(x)]^2 f ( x ) f(x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 17, 2016

Relevant wiki: Logarithmic Functions - Problem Solving - Hard

f ( 3 x + x 3 1 + 3 x ) f ( 2 x 1 + x 2 ) = log ( 1 + 3 x + x 3 1 + 3 x 1 3 x + x 3 1 + 3 x ) log ( 1 + 2 x 1 + x 2 1 2 x 1 + x 2 ) = log ( 1 + 3 x 2 + 3 x + x 3 1 + 3 x 2 3 x x 3 ) log ( 1 + x 2 + 2 x 1 + x 2 2 x ) = log [ ( 1 + x 1 x ) 3 ] log [ ( 1 + x 1 x ) 2 ] = 3 log ( 1 + x 1 x ) 2 log ( 1 + x 1 x ) = log ( 1 + x 1 x ) = f ( x ) \begin{aligned} f \left(\frac{3x+x^3}{1+3x} \right) - f \left(\frac{2x}{1+x^2} \right) & = \log \left( \frac {1 + \frac{3x+x^3}{1+3x}} {1 - \frac{3x+x^3}{1+3x}} \right) - \log \left( \frac {1 + \frac{2x}{1+x^2}} {1 - \frac{2x}{1+x^2}} \right) \\ & = \log \left(\frac{1+3x^2+3x+x^3}{1+3x^2-3x-x^3} \right) - \log \left(\frac{1+x^2+2x}{1+x^2-2x} \right) \\ & = \log \left[ \left( \frac{1+x}{1-x} \right)^3 \right] - \log \left[ \left( \frac{1+x}{1-x} \right)^2 \right] \\ & = 3 \log \left( \frac{1+x}{1-x} \right) - 2 \log \left( \frac{1+x}{1-x} \right) \\ & = \log \left( \frac{1+x}{1-x} \right) = \boxed{f(x)} \end{aligned}

you got it right :)

Sabhrant Sachan - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...