Substitution

Calculus Level 3

2 2 1 + x 2 1 + 2 x d x = a b \large \displaystyle \int_{- 2}^2 \frac{1 + x^2}{1 + 2^x} \, dx = \dfrac ab

The equation above holds for coprime positive integers a a and b b .

Find a + b a+b .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 10, 2017

Relevant wiki: Integration Tricks

I = 2 2 1 + x 2 1 + 2 x d x Using identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 2 2 1 + x 2 1 + 2 x + 1 + x 2 1 + 2 x d x = 1 2 2 2 ( 1 + x 2 ) ( 1 1 + 2 x + 2 x 2 x + 1 ) d x = 1 2 2 2 ( 1 + x 2 ) d x Note that 1 + x 2 is even. = 0 2 ( 1 + x 2 ) d x = x + x 3 3 0 2 = 2 + 8 3 = 14 3 \begin{aligned} I & = \int_{-2}^2 \frac {1+x^2}{1+2^x} dx & \small \color{#3D99F6} \text{Using identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_{-2}^2 \frac {1+x^2}{1+2^x} + \frac {1+x^2}{1+2^{-x}} dx \\ & = \frac 12 \int_{-2}^2 \left(1+x^2\right) \left( \frac 1{1+2^x} + \frac {2^x}{2^x+1} \right) dx \\ & = \frac 12 \int_{-2}^2 \left(1+x^2\right) \ dx & \small \color{#3D99F6} \text{Note that } 1+x^2 \text{ is even.} \\ & = \int_0^2 \left(1+x^2\right) \ dx \\ & = x + \frac {x^3}3 \bigg|_0^2 = 2 + \frac 83 = \frac {14}3 \end{aligned}

a + b = 14 + 3 = 17 \implies a + b = 14+3 = \boxed{17}

Nice!!! (+1)

Noel Lo - 3 years, 10 months ago
Zach Abueg
May 10, 2017

Relevant wiki: Integration Tricks

We substitute the variable x x with x - x and add the resulting integral to the original integral to get

2 I = 2 2 1 + x 2 1 + 2 x d x + 2 2 1 + x 2 1 + 2 x d x \displaystyle 2I = \int_{- 2}^2 \frac {1 + x^2}{1 + 2^x} \ dx + \int_2^{- 2} - \frac {1 + x^2}{1 + 2^{- x}} \ dx

= 2 2 1 + x 2 1 + 2 x + 1 + x 2 1 + 2 x d x \displaystyle = \int_{- 2}^2 \frac {1 + x^2}{1 + 2^x} + \frac {1 + x^2}{1 + 2^{- x}} \ dx

= 2 2 1 + x 2 1 + 2 x + 1 + x 2 1 + 2 x 2 x 2 x d x \displaystyle = \int_{- 2}^2 \frac {1 + x^2}{1 + 2^x} + \frac {1 + x^2}{1 + 2^{- x}} \cdot \frac{2^x}{2^x} \ dx

= 2 2 ( 1 + x 2 ) 2 x 1 + 2 x + 1 + x 2 1 + 2 x d x \displaystyle = \int_{- 2}^2 \frac {(1 + x^2)2^x}{1 + 2^x} + \frac {1 + x^2}{1 + 2^x} \ dx

2 2 ( 1 + x 2 ) ( 1 + 2 x ) 1 + 2 x d x \displaystyle \int_{- 2}^2 \frac {(1 + x^2) \cdot (1 + 2^x)}{1 + 2^x} \ dx

2 2 1 + x 2 d x = 4 + 16 3 = 28 3 \displaystyle \int_{- 2}^2 1 + x^2 \ dx = 4 + \frac {16}{3} = \frac {28}{3}

Thus, I = 14 3 \displaystyle I = \large{\boxed{\frac {14}{3}}}

Note that more generally, for even functions f f , a a f ( x ) 1 + b x d x = 1 2 a a f ( x ) d x \displaystyle \int_{- a}^a \frac{f(x)}{1 + b^x} \ dx = \frac 12 \int_{- a}^a f(x) \ dx .

Nicely done.

What I would have done is to show that 1 1 + 2 x + 1 1 + 2 x = 1 \dfrac1{1+2^x} + \dfrac1{1+2^{-x}} = 1 is true first, then the remaining working becomes much simpler, because there are no fractions involved anymore!

Pi Han Goh - 4 years ago

Log in to reply

Ah yes, I noticed with Chew-Seong's concise solution. Thank you, Pi!

Zach Abueg - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...