Substitution?

Calculus Level 5

1 + x 4 1 x 4 d x \int \dfrac{\sqrt{1+x^4}}{1-x^4}dx

If the result of the integral above is in the form:

a ( l n ( f ( x ) ) + arcsin ( g ( x ) ) ) + c a\left(ln(f(x))+ \arcsin(g(x))\right)+c

(Where a is constant and f,g are functions of x.)

Then the value of

f ( 0 ) + a ( g ( 1 ) ) f(0)+a(g(1)) is:

1.5 1 1.25 1.75

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sid Patak
Jul 10, 2017

1 + x 4 1 x 4 d x \int \dfrac{\sqrt{1+x^4}}{1-x^4}dx

u = 2 x 1 + x 4 u= \dfrac{\sqrt{2}x}{\sqrt{1+x^4}} d u = 2 ( 1 x 4 ) 1 + x 4 ( 1 + x 4 ) d x du= \dfrac{\sqrt{2}(1-x^4)}{\sqrt{1+x^4}(1+x^4)}dx

1 2 d u 1 u 4 \dfrac{1}{\sqrt2} \int \dfrac{du}{1-u^4}

1 2 2 ( 1 1 u 2 + 1 1 + u 2 ) d u \dfrac{1}{2\sqrt2} \int \left(\dfrac{1}{1-u^2} + \dfrac{1}{1+u^2}\right)du

1 4 2 l n ( 1 + u 1 u ) + 1 2 2 a r c t a n ( u ) + c \dfrac{1}{4\sqrt2} ln\left(\dfrac{1+u}{1-u}\right) + \dfrac{1}{2\sqrt2}arctan(u) +c

1 2 2 ( l n ( 1 + x 4 + 2 x 1 x 2 ) + a r c s i n ( 2 x 1 + x 2 ) ) + c \dfrac{1}{2\sqrt2}\left(ln\left(\dfrac{\sqrt{1+x^4}+\sqrt2x}{1-x^2}\right) + arcsin\left(\dfrac{\sqrt2x}{1+x^2}\right)\right) +c

R e q u i r e d R e s u l t = 1 + 1 4 = 5 4 Required Result = 1 +\dfrac{1}{4} = \dfrac{5}{4}

= 1.25 = 1.25

u = 2 x 1 + x 4 u= \dfrac{\sqrt{2}x}{\sqrt{1+x^4}}

How did you think of this substitution? What motivates you to do so?

Pi Han Goh - 3 years, 11 months ago

@Anoop Babu ,

How you thought of the substitution ? What made you do that?

Priyanshu Mishra - 3 years, 10 months ago

Interesting. I did the substitution u = 1 + x 4 x u=\frac{\sqrt{1+x^4}}{x} .

James Wilson - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...