Substitution?

Algebra Level 3

Given that x = 2017 6 \large x = \sqrt \frac{2017}{6} . Compute 750 x 6 + 150 x 4 + 30 x 2 5 + 25 x 2 + 125 x 4 \large \dfrac{750x^6 + 150x^4 + 30x^2}{5 + 25x^2 + 125x^4}


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Jul 11, 2017

750 x 6 + 150 x 4 + 30 x 2 125 x 4 + 25 x 2 + 5 = 30 x 2 ( 25 x 4 + 5 x 2 + 1 ) 5 ( 25 x 4 + 5 x 2 + 1 ) = 6 x 2 x 2 = 2017 6 = 2017 \displaystyle \begin{aligned} \frac{750x^6 + 150x^4 + 30x^2}{125x^4 + 25x^2 + 5} & = \frac{30x^2 \left(25x^4 + 5x^2 + 1\right)}{5\left(25x^4 + 5x^2 + 1\right)} \\ & = 6x^2 & \small \color{#3D99F6} x^2 = \frac{2017}{6} \\ & = \boxed{2017} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...