Substitution Could Work?

Algebra Level 1

Let x = log a b c x=\log_a{bc} , y = log b c a y=\log_b{ca} , and z = log c a b z=\log_c{ab} . Evaluate: 1 x + 1 + 1 y + 1 + 1 z + 1 \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 13, 2018

1 x + 1 + 1 y + 1 + 1 z + 1 = 1 log a b c + 1 + 1 log b c a + 1 + 1 log c a b + 1 = 1 log b c log a + 1 + 1 log c a log b + 1 + 1 log a b log c + 1 = log a log b + log c + log a + log b log c + log a + log b + log c log a + log b + log c = 1 \begin{aligned} \frac 1{x+1} + \frac 1{y+1} + \frac 1{z+1} & = \frac 1{\log_a bc+1} + \frac 1{\log_b ca +1} + \frac 1{\log_c ab+1} \\ & = \frac 1{\frac {\log bc}{\log a}+1} + \frac 1{\frac {\log ca}{\log b}+1} + \frac 1{\frac {\log ab}{\log c}+1} \\ & = \frac {\log a}{\log b + \log c + \log a} + \frac {\log b}{\log c + \log a + \log b} + \frac {\log c}{\log a + \log b + \log c} \\ & = \boxed 1 \end{aligned}

Jeremy Galvagni
Jul 13, 2018

First note: log a b c + 1 = log a a b c \log_{a}bc+1=\log_{a}abc etc so the substitution can yield the expression

1 log a a b c + 1 log b a b c + 1 log b a b c \frac{1}{\log_{a}abc}+\frac{1}{\log_{b}abc}+\frac{1}{\log_{b}abc}

Next, use the change of base formula to make all base a a and simplify

1 log a a b c + log a b log a a b c + log a c log a a b c = log a a + log a b + log a c log a a b c = log a a b c log a a b c = 1 \frac{1}{\log_{a}abc}+\frac{\log_{a}b}{\log_{a}abc}+\frac{\log_{a}c}{\log_{a}abc}=\frac{\log_{a}a+\log_{a}b+\log_{a}c}{\log_{a}abc}=\frac{\log_{a}abc}{\log_{a}abc}=\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...