Let x = lo g a b c , y = lo g b c a , and z = lo g c a b . Evaluate: x + 1 1 + y + 1 1 + z + 1 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First note: lo g a b c + 1 = lo g a a b c etc so the substitution can yield the expression
lo g a a b c 1 + lo g b a b c 1 + lo g b a b c 1
Next, use the change of base formula to make all base a and simplify
lo g a a b c 1 + lo g a a b c lo g a b + lo g a a b c lo g a c = lo g a a b c lo g a a + lo g a b + lo g a c = lo g a a b c lo g a a b c = 1
Problem Loading...
Note Loading...
Set Loading...
x + 1 1 + y + 1 1 + z + 1 1 = lo g a b c + 1 1 + lo g b c a + 1 1 + lo g c a b + 1 1 = lo g a lo g b c + 1 1 + lo g b lo g c a + 1 1 + lo g c lo g a b + 1 1 = lo g b + lo g c + lo g a lo g a + lo g c + lo g a + lo g b lo g b + lo g a + lo g b + lo g c lo g c = 1