Let . Then the differential equation above becomes for some constant . Find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Knowing that y = tan z , differentiating it w.r.t. x ,
d x d y = sec 2 z d x d z
Differentiating it again w.r.t. x ,
d x 2 d 2 y = 2 sec 2 z tan z ( d x d z ) 2 + sec 2 z d x 2 d 2 z
d x 2 d 2 y = sec 2 z [ 2 tan z ( d x d z ) 2 + d x 2 d 2 z ]
Substituting into the original equation,
sec 2 z [ 2 tan z ( d x d z ) 2 + d x 2 d 2 z ] = 1 + 1 + tan 2 z 2 ( 1 + tan z ) ( sec 2 z d x d z ) 2
Simplifying the terms,
2 tan z ( d x d z ) 2 + d x 2 d 2 z = cos 2 z + sec 2 z 2 ( 1 + tan z ) sec 4 z ( d x d z ) 2 sec 2 z 1
2 tan z ( d x d z ) 2 + d x 2 d 2 z = cos 2 z + 2 ( 1 + tan z ) ( d x d z ) 2
d x 2 d 2 z = cos 2 z + 2 ( 1 + tan z − tan z ) ( d x d z ) 2
Hence, d x 2 d 2 z = cos 2 z + 2 ( d x d z ) 2
k = 2