Substitution is blind - 2

Algebra Level 1

If x = 7 4 3 x = 7 - 4\sqrt{3} , find the value of x + 1 x x + \dfrac{1}{x} .


Next one: Substitution is blind- 3

Previous one: Substitution is blind - 1


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Feb 22, 2019

Method 1

x + 1 x = 7 4 3 + 1 7 4 3 = 7 4 3 + 7 + 4 3 ( 7 4 3 ) ( 7 + 4 3 ) = 7 4 3 + 7 + 4 3 = 14 \begin{aligned} x + \frac 1x & = 7-4\sqrt 3 + \frac 1{7-4\sqrt 3} \\ & = 7-4\sqrt 3 + \frac {7+4\sqrt 3}{(7-4\sqrt 3)(7+4\sqrt 3)} \\ & = 7-4\sqrt 3 + 7+4\sqrt 3 \\ & = \boxed{14} \end{aligned}

Method 2

x = 7 4 3 Squaring both sides x 2 = 97 56 3 x 2 = 14 ( 7 4 3 ) 1 x 2 = 14 x 1 Dividing both sides by x x = 14 1 x Rearranging x + 1 x = 14 \begin{aligned} x & = 7 - 4\sqrt 3 & \small \color{#3D99F6} \text{Squaring both sides} \\ x^2 & = 97 - 56\sqrt 3 \\ x^2 & = 14(7-4\sqrt 3) - 1 \\ x^2 & = 14x - 1 & \small \color{#3D99F6} \text{Dividing both sides by }x \\ x & = 14 - \frac 1x & \small \color{#3D99F6} \text{Rearranging} \\ \implies x + \frac 1x & = \boxed{14} \end{aligned}

Notice that ( 7 4 3 ) ( 7 + 4 3 ) = 7 2 4 2 3 = 1 (7-4\sqrt3)(7+4\sqrt3)=7^{2}-4^{2}3=1 , therefore 1 x = 7 + 4 3 \frac{1}{x}=7+4\sqrt3 .

Aly Ahmed
Jun 24, 2020

x = 7 4 3 = 49 48 x=7-4\sqrt{3}=\sqrt{49}-\sqrt{48}

1 x = 49 + 48 \implies \dfrac{1}{x} = \sqrt{49}+\sqrt{48}

x + 1 x = 49 48 + 49 + 48 = 2 49 = 2 × 7 = 14 \implies x+ \dfrac{1}{x} =\sqrt{49}-\sqrt{48}+\sqrt{49}+\sqrt{48}=2\sqrt{49} = 2\times 7 =\textcolor{#20A900}{\boxed{14}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...