Substitution is blind - 3

Algebra Level 2

If x = 9 + 4 5 x = 9 + 4\sqrt{5} then find the value of x 2 1 x 2 x^2 - \dfrac{1}{x^2} rounded to the nearest integer.


Next one : Substitution is blind - 4

Previous one : Substitution is blind - 2


The answer is 322.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 28, 2019

Given that x = 9 + 4 5 x = 9 + 4\sqrt 5 , 1 x = 1 9 + 4 5 = 9 4 5 ( 9 4 5 ) ( 9 + 4 5 ) = 9 4 5 \implies \dfrac 1x = \dfrac 1{9+4\sqrt 5} = \dfrac {9-4\sqrt 5}{(9-4\sqrt 5)(9+4\sqrt 5)} = 9 - 4\sqrt 5 .

Then we have:

x 2 1 x 2 = ( x + 1 x ) ( x 1 x ) = ( 9 + 4 5 + 9 4 5 ) ( 9 + 4 5 9 + 4 5 ) = 18 × 8 5 322 \begin{aligned} x^2 - \frac 1{x^2} & = \left(x+\frac 1x\right) \left(x-\frac 1x\right) \\ & = \left(9+4\sqrt 5 + 9 - 4\sqrt 5 \right)\left(9+4\sqrt 5 - 9 + 4\sqrt 5 \right) \\ & = 18 \times 8\sqrt 5 \\ & \approx \boxed{322} \end{aligned}

It is interesting to note that while x 2 1 x 2 x^2-\frac{1}{x^2} is close to 322 322 , x 2 + 1 x 2 x^2+\frac{1}{x^2} is exactly equal to 322 322 .

Joshua Lowrance - 2 years, 3 months ago

Log in to reply

Because 1 x 2 0 \dfrac 1{x^2} \approx 0 .

Chew-Seong Cheong - 2 years, 3 months ago

x = 9 + 4 5 = 81 + 80 x=9+4\sqrt{5} = \sqrt{81}+\sqrt{80} 1 x = 81 80 \implies \dfrac{1}{x} = \sqrt{81} -\sqrt{80}

x 2 1 x 2 = ( 81 + 80 ) 2 + ( 81 80 ) 2 x^2 -\dfrac{1}{x^2} = (\sqrt{81}+\sqrt{80})^2 + ( \sqrt{81} -\sqrt{80})^2

Let a = 81 a= \sqrt{81} and b = 80 b= \sqrt{80}

x 2 1 x 2 = ( a + b ) 2 ( a b ) 2 = a 2 + b 2 + 2 a b a 2 b 2 + 2 a b = 4 a b = 4 × 81 × 80 = 4 × 9 × 4 5 = 144 5 322 \implies x^2 -\dfrac{1}{x^2} = (a+b)^2 - (a-b)^2 = a^2 +b^2 +2ab -a^2 -b^2 +2ab =4ab =4 \times \sqrt{81} \times \sqrt{80} = 4 \times 9 \times 4\sqrt{5} = 144 \sqrt{5} \approx \textcolor{#20A900}{\boxed{322}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...