Substitution is blind - 1

Algebra Level 2

If y = 3 3 + 1 3 3 y = \sqrt[3]{3} + \dfrac{1}{\sqrt[3]{3}} the find the value of 3 y 3 9 y 3y^3 - 9y .


Next one : Substitution is blind - 2


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

y = 3 3 + 1 3 3 Cubing both sides y 3 = 3 + 3 3 3 + 3 3 3 + 1 3 y 3 = 3 + 3 y + 1 3 Multiplying both sides by 3 3 y 3 = 9 + 9 y + 1 Rearranging \begin{aligned} y & = \sqrt[3] 3 + \frac 1{\sqrt[3] 3} & \small \color{#3D99F6} \text{Cubing both sides} \\ y^3 & = 3 + 3\sqrt[3] 3 + \frac 3{\sqrt[3]3} + \frac 13 \\ y^3 & = 3 + 3y + \frac 13 & \small \color{#3D99F6} \text{Multiplying both sides by }3 \\ 3y^3 & = 9 + 9y + 1 & \small \color{#3D99F6} \text{Rearranging} \end{aligned}

3 y 3 9 y = 10 \begin{aligned} \implies 3y^3 - 9y & = \boxed{10} \end{aligned}

Nice solution. Didn't know it could be solved like this.

Barry Leung - 2 years, 4 months ago

Log in to reply

Now, you know.

Chew-Seong Cheong - 2 years, 4 months ago

Same reasoning!

Vinayak Srivastava - 1 year ago
Barry Leung
Feb 7, 2019

Wayyyy to complicate!! But congrats on finding a different way to reach the solution!!

Shuvodip Das - 2 years, 3 months ago

Log in to reply

I know right :)

Barry Leung - 2 years, 3 months ago

Use the relation ( a + b ) 3 = a 3 + b 3 + 3 a b ( a + b ) (a+b)^3=a^3+b^3+3ab(a+b) to get y 3 = ( 3 3 + 1 3 3 ) 3 = 3 + 1 3 + 3 y = 10 3 + 3 y 3 y 3 9 y = 10 y^3=\left(\sqrt[3]3+\dfrac{1}{\sqrt[3]3}\right) ^3=3+\dfrac{1}{3}+3y=\dfrac{10}{3}+3y\implies 3y^3-9y=\boxed {10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...