Real numbers x and y are such that:
{ ( x + 1 ) ( y + 1 ) = 4 0 x y ( x + y ) = 3 8 0 .
Find the sum of all possible values of x 2 + y 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If we expand and simplify the first equation we get:
{ x y + x + y = 3 9 x y ( x + y ) = 3 8 0 .
Let S = x + y and P = x y . The equations become:
{ S + P = 3 9 S P = 3 8 0 .
Substituting P = 3 9 − S into the second equation, we get S ( 3 9 − S ) = 3 8 0 ⟹ S 2 − 3 9 S + 3 8 0 = 0 ⟹ ( S − 2 0 ) ( S − 1 9 ) = 0 ⟹ S = 2 0 or S = 1 9 .
Substituting these values of S into S + P = 3 9 , we get that ( S , P ) = ( 1 9 , 2 0 ) or ( 2 0 , 1 9 ) .
Finally, x 2 + y 2 = ( x + y ) 2 − 2 x y = S 2 − 2 P , so it could be 1 9 2 − 2 ( 2 0 ) = 3 2 1 or 2 0 2 − 2 ( 1 9 ) = 3 6 2 . The answer is 3 2 1 + 3 6 2 = 6 8 3 .
Problem Loading...
Note Loading...
Set Loading...
From ( x + 1 ) ( y + 1 ) = x y + x + y + 1 = 4 0 , ⟹ x y = 3 9 − ( x + y ) . Then we have:
x y ( x + y ) ( 3 9 − ( x + y ) ) ( x + y ) ( x + y ) 2 − 3 9 ( x + y ) + 3 8 0 ( x + y − 1 9 ) ( x + y − 2 0 ) ⟹ x + y = 3 8 0 = 3 8 0 = 0 = 0 = { 1 9 2 0
Then we have x 2 + y 2 = ( x + y ) 2 − 2 x y = ( x + y ) 2 − 2 ( 3 9 − ( x + y ) ) = { 3 2 1 3 6 2 for x + y = 1 9 for x + y = 2 0 .
Therefore, the sum of all possible of x 2 + y 2 is 6 8 3 .