Substitution might help

Algebra Level 3

Real numbers x x and y y are such that:

{ ( x + 1 ) ( y + 1 ) = 40 x y ( x + y ) = 380. \begin{cases} (x+1)(y+1)=40 \\ xy(x+y)=380. \end{cases}

Find the sum of all possible values of x 2 + y 2 x^2+y^2 .


The answer is 683.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From ( x + 1 ) ( y + 1 ) = x y + x + y + 1 = 40 (x+1)(y+1) = xy + x + y + 1 = 40 , x y = 39 ( x + y ) \implies xy = 39-(x+y) . Then we have:

x y ( x + y ) = 380 ( 39 ( x + y ) ) ( x + y ) = 380 ( x + y ) 2 39 ( x + y ) + 380 = 0 ( x + y 19 ) ( x + y 20 ) = 0 x + y = { 19 20 \begin{aligned} xy(x+y) & = 380 \\ (39-(x+y))(x+y) & = 380 \\ (x+y)^2 - 39(x+y) + 380 & = 0 \\ (x+y -19)(x+y-20) & = 0 \\ \implies x+y & = \begin{cases} 19 \\ 20 \end{cases} \end{aligned}

Then we have x 2 + y 2 = ( x + y ) 2 2 x y = ( x + y ) 2 2 ( 39 ( x + y ) ) = { 321 for x + y = 19 362 for x + y = 20 x^2 + y^2 = (x+y)^2 - 2xy = (x+y)^2 - 2(39-(x+y)) = \begin{cases} 321 & \text{for }x+y = 19 \\ 362 & \text{for }x+y = 20 \end{cases} .

Therefore, the sum of all possible of x 2 + y 2 x^2+y^2 is 683 \boxed{683} .

Julian Yu
Nov 2, 2019

If we expand and simplify the first equation we get:

{ x y + x + y = 39 x y ( x + y ) = 380. \begin{cases} xy+x+y=39 \\ xy(x+y)=380. \end{cases}

Let S = x + y S=x+y and P = x y P=xy . The equations become:

{ S + P = 39 S P = 380. \begin{cases} S+P=39 \\ SP=380. \end{cases}

Substituting P = 39 S P=39-S into the second equation, we get S ( 39 S ) = 380 S 2 39 S + 380 = 0 ( S 20 ) ( S 19 ) = 0 S = 20 or S = 19. S(39-S)=380 \implies S^2-39S+380=0 \implies (S-20)(S-19)=0 \implies S=20 \text{ or } S=19.

Substituting these values of S S into S + P = 39 S+P=39 , we get that ( S , P ) = ( 19 , 20 ) or ( 20 , 19 ) (S,P)=(19,20) \text{ or } (20,19) .

Finally, x 2 + y 2 = ( x + y ) 2 2 x y = S 2 2 P x^2+y^2=(x+y)^2-2xy=S^2-2P , so it could be 1 9 2 2 ( 20 ) = 321 19^2-2(20)=321 or 2 0 2 2 ( 19 ) = 362 20^2-2(19)=362 . The answer is 321 + 362 = 683 321+362=\boxed{683} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...