Substitution(Enjoy!)

Calculus Level 5

Given that the solution of the differential equation

x d x y d y x d y y d x = 1 y 2 + x 2 x 2 y 2 \dfrac{xdx - ydy}{xdy - ydx} = \sqrt{\dfrac{1 - y^{2} + x^{2}}{x^{2} - y^{2}}}

is f ( x , y ) + 1 + f ( x , y ) = c ( x + y f ( x , y ) ) , \sqrt{f(x , y)} + \sqrt{1 + f(x , y)} = c\left ( \dfrac{x + y}{\sqrt{f(x , y)}} \right ), with c c an arbitrary constant, find 60 f ( 3 , 2 ) 60f(3 , 2) .


The answer is 300.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Fiki Akbar
Oct 3, 2015

Let's write u = x 2 y 2 v = tanh 1 ( y x ) u = x^2 - y^2 \\ v = \tanh^{-1}\left(-\frac{y}{x}\right) then, 1 2 d u = x d x y d y u d v = y d x x d y \frac{1}{2} du = x\:dx-y\:dy \\ u\: dv = y\: dx-x \:dy Hence, we can write the original equation as, d u 2 u d v = 1 + u u , \frac{-du}{2u\:dv} = \sqrt{\frac{1+u}{u}} \:, which is now a separable. Now, we have d u 2 u ( 1 + u ) = d v . \frac{du}{2\sqrt{u(1+u)}} = -dv \:. Integrating both sides, we get ln ( u + 1 + u ) = v + C . \ln(\sqrt{u} + \sqrt{1+u} ) = - v + C \:. Subtituting back to original x x and y y , we get (use identity tanh 1 ( y x ) = 1 2 ln ( x y x + y ) \tanh^{-1}\left(-\frac{y}{x}\right) = \frac{1}{2} \ln\left(\frac{x-y}{x+y}\right) ) x 2 y 2 + 1 + x 2 y 2 = c ( x + y x 2 y 2 ) \sqrt{x^2 - y^2} + \sqrt{1+ x^2 - y^2} = c\left(\frac{x+y}{\sqrt{x^2 - y^2}}\right) So, we have f ( x , y ) = x 2 y 2 f(x,y) = x^2 - y^2 , and 60 f ( 3 , 2 ) = 300 60 f(3,2) = 300 .

nice solution!!

Pawan pal - 4 years, 6 months ago
Incredible Mind
Dec 10, 2014

substitute x=p+q,y=p-q hence x^2-y^2 which implies d(pq)= 2xdx - 2ydy then find d(y/x) using quotient rule. Remember dp/p - dq/q = d(ln(p/q)) . Just substitute in the equation and solve.You will get f(x,y) = x^2-y^2 . Hence 60(3,2)=300

Really Nice ! I appreciate it ! One can also used Hyperbolic Substitution x = sec θ & y = tan θ x=\sec { \theta } \quad \& \quad y=\tan { \theta } .

Deepanshu Gupta - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...