An algebra problem by Ραμών Αδάλια

Algebra Level 3

Let π ( n ) = j = 1 n k = 1 j k ! ( k 2 + k + 1 ) . \pi (n)=\sum _{ j=1 }^{ n }{ \sum _{ k=1 }^{ j }{ k!({ k }^{ 2 }+k+1) } }.

Compute the last 2 digits of the decimal representation of π ( 7 ) \pi(7) .


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 71.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anirudh Sreekumar
Mar 26, 2017

π ( n ) = j = 1 n i = 1 j i ! ( i 2 + i + 1 ) = j = 1 n i = 1 j i ! ( ( i + 1 ) 2 i ) = j = 1 n i = 1 j ( i + 1 ) ( i + 1 ) ! i ( i ! ) We can see that the sum is telescoping = j = 1 n ( ( j + 1 ) ( j + 1 ) ! 1 ) = ( j = 1 n ( j + 1 ) ! ( j + 2 1 ) ) n = ( j = 1 n ( j + 2 ) ! ( j + 1 ) ! ) n Once again, the sum is telescoping π ( n ) = ( ( n + 2 ) ! 2 ) n = ( n + 2 ) ! ( n + 2 ) π ( 7 ) = ( 9 ! 9 ) = 362871 The last 2 digits of π ( 7 ) = 71 \begin{aligned}\pi (n)&=\sum _{ j=1 }^{ n }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } }\\&=\sum _{ j=1 }^{ n }{ \sum _{ i=1 }^{ j }{ i!((i+1)^2-i) }} \\&=\sum _{ j=1 }^{ n }{ \sum _{ i=1 }^{ j }{( i+1)(i+1)!-i (i!)}}&\small\color{#3D99F6}\text{We can see that the sum is telescoping}\\&=\sum _{ j=1 }^{ n }{(( j+1)(j+1)!-1 )}\\&=\left(\sum _{ j=1 }^{ n }{( j+1)!(j+2-1)}\right)-n\\&=\left(\sum _{ j=1 }^{ n }{( j+2)!-(j+1)!}\right)-n&\small\color{#3D99F6}\text{Once again, the sum is telescoping}\\\pi(n)&=((n+2)!-2)-n=(n+2)!-(n+2)\\\pi(7)&=(9!-9)=362871\\&\small\color{#3D99F6}\text{The last 2 digits of }\pi(7)=\boxed{71}\end{aligned}

That was my approach, nice solution!

Ραμών Αδάλια - 4 years, 2 months ago

Log in to reply

Thanks- :)

Anirudh Sreekumar - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...