Such ceiling

Algebra Level 3

If A = 3 + 4 + 5 + + 83 A = \left \lceil \sqrt{3} \right \rceil + \left \lceil \sqrt{4} \right \rceil + \left \lceil \sqrt{5}\right \rceil +\cdots +\left \lceil \sqrt{83} \right \rceil , find the value of 1 3 A \dfrac13\left \lceil \sqrt A \right \rceil .

Notation : \lceil \cdot \rceil denotes the ceiling function .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 13, 2018

A = 3 + 4 2 4 + 5 + + 9 ( 9 4 ) 9 + 10 + + 16 ( 16 9 ) 16 + + 65 + + 81 ( 81 64 ) 81 + 82 + 83 2 100 = 2 ( 2 ) + k = 3 9 ( k 2 ( k 1 ) 2 ) k + 2 ( 10 ) = 4 + k = 3 9 ( 2 k 2 k ) + 20 = 4 + 2 × 9 ( 9 + 1 ) ( 2 ( 9 ) + 1 ) 6 2 × 2 ( 2 + 1 ) ( 2 ( 2 ) + 1 ) 6 9 ( 9 + 1 ) 2 + 2 ( 2 + 1 ) 2 + 20 = 4 + 570 10 45 + 3 + 20 = 542 \begin{aligned} A & = \underbrace{\left\lceil \sqrt 3\right\rceil + \left\lceil \sqrt 4\right\rceil}_{2 \sqrt 4} + {\color{#3D99F6} \underbrace{\left\lceil \sqrt 5\right\rceil + \cdots + \left\lceil \sqrt 9\right\rceil}_{(9-4)\sqrt 9} + \underbrace{\left\lceil \sqrt {10}\right\rceil + \cdots + \left\lceil \sqrt {16}\right\rceil}_{(16-9)\sqrt {16}} + \cdots + \underbrace{\left\lceil \sqrt {65} \right\rceil + \cdots + \left\lceil \sqrt {81} \right\rceil}_{(81-64)\sqrt {81}}} + \underbrace{\left\lceil \sqrt {82} \right\rceil + \left\lceil \sqrt {83} \right\rceil}_{2\sqrt {100}} \\ & = 2(2) + {\color{#3D99F6}\sum_{k=3}^9 \left(k^2-(k-1)^2\right)k} + 2(10) \\ & = 4 + \sum_{k=3}^9 \left(2k^2-k\right) + 20 \\ & = 4 + 2\times \frac {9(9+1)(2(9)+1)}6 - 2\times \frac {2(2+1)(2(2)+1)}6 - \frac {9(9+1)}2 + \frac {2(2+1)}2 + 20 \\ & = 4 + 570 - 10 - 45 + 3 + 20 \\ & = 542 \end{aligned}

Therefore, 1 3 A = 1 3 × 24 = 8 \dfrac 13 \left \lceil \sqrt A \right \rceil = \dfrac 13 \times 24 = \boxed{8} .

Hung Woei Neoh
May 16, 2016

We know that for ( n 1 ) 2 < x n 2 (n-1)^2 < x \leq n^2 , where n n is a positive integer,

x = n \lceil \sqrt{x} \rceil = n

For example, n = 3 , 2 2 < x 3 3 4 < x 9 n=3, \;\; 2^2 < x \leq 3^3 \implies 4 < x \leq 9

For any value of x x within this range, x = 3 \lceil \sqrt{x} \rceil = 3

With this, we can easily calculate the value of the expression A A

What we need to do is find out the number of terms between each perfect square

3 = 4 = 2 \lceil \sqrt{3} \rceil =\lceil \sqrt{4} \rceil = 2 , there are 2 2 terms here

5 = 6 = = 9 = 3 \lceil \sqrt{5} \rceil =\lceil \sqrt{6} \rceil =\ldots = \lceil \sqrt{9} \rceil =3 , there are 9 4 = 5 9-4 = 5 terms here

10 = 11 = = 16 = 4 \lceil \sqrt{10} \rceil =\lceil \sqrt{11} \rceil =\ldots = \lceil \sqrt{16} \rceil = 4 , there are 16 9 = 7 16-9 = 7 terms here

17 = 18 = = 25 = 5 \lceil \sqrt{17} \rceil =\lceil \sqrt{18} \rceil = \ldots = \lceil \sqrt{25} \rceil =5 , there are 25 16 = 9 25-16 = 9 terms here

26 = 27 = = 36 = 6 \lceil \sqrt{26} \rceil =\lceil \sqrt{27} \rceil = \ldots = \lceil \sqrt{36} \rceil =6 , there are 36 25 = 11 36-25=11 terms here

37 = 38 = = 49 = 7 \lceil \sqrt{37} \rceil =\lceil \sqrt{38} \rceil = \ldots = \lceil \sqrt{49} \rceil =7 , there are 49 36 = 13 49-36=13 terms here

50 = 51 = = 64 = 8 \lceil \sqrt{50} \rceil =\lceil \sqrt{51} \rceil = \ldots = \lceil \sqrt{64} \rceil =8 , there are 64 49 = 15 64-49=15 terms here

65 = 66 = = 81 = 9 \lceil \sqrt{65} \rceil =\lceil \sqrt{66} \rceil = \ldots = \lceil \sqrt{81} \rceil =9 , there are 81 64 = 17 81-64=17 terms here

82 = 83 = 10 \lceil \sqrt{82} \rceil =\lceil \sqrt{83} \rceil = 10 , there are 2 2 terms here

Therefore,

A = 3 + 4 + 5 + + 83 = 2 ( 2 ) + 3 ( 5 ) + 4 ( 7 ) + 5 ( 9 ) + 6 ( 11 ) + 7 ( 13 ) + 8 ( 15 ) + 9 ( 17 ) + 10 ( 2 ) = 540 A = \lceil \sqrt{3} \rceil + \lceil \sqrt{4}\rceil + \lceil \sqrt{5} \rceil + \ldots + \lceil \sqrt{83} \rceil \\ =2(2) + 3(5) + 4(7) + 5(9) + 6(11) + 7(13) + 8(15) + 9(17) + 10(2)\\ =540

We then calculate the desired answer:

1 3 A = 1 3 540 = 1 3 23.24 = 1 3 ( 24 ) = 8 \dfrac{1}{3} \lceil \sqrt{A} \rceil\\ =\dfrac{1}{3} \lceil \sqrt{540} \rceil\\ =\dfrac{1}{3} \lceil 23.24 \rceil\\ =\dfrac{1}{3} (24)\\ =\boxed{8}

Great!! Same thinking!!

Jun Endo - 5 years, 1 month ago

I did it by brute force as well, but I grouped them up according to (9-4) (16-9) and all and finally obtained - 8 - (sum of squares from 3 sq to 8 sq) +9*81 + 20. Then I manually calculated 21, 22 and 23 square to finally reach the solution. Please don't do this, especially the first bit unless you're gonna turn it into a summation like the top comment.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...