Such huge powers gives me a headache!

Find the sum of all values of n n such that 2 200 31 2 192 + 2 n 2^{200}-31 \cdot 2^{192}+2^{n} is a perfect square.


Click here to try the similar version of this problem.


The answer is 198.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

2 200 31 2 192 + 2 n = 2 192 ( 2 8 31 + 2 n 192 ) = 2 192 ( 225 + 2 n 192 ) 2^{200}-31 \cdot 2^{192}+2^{n}=2^{192}(2^{8}-31+2^{n-192})=2^{192}(225+2^{n-192}) .

Since 2 192 2^{192} is a perfect square, 225 + 2 n 192 225+2^{n-192} must also be a perfect square.

This is equivalent to determining a Pythagorean triple where one term is 15 15 and where the other term is a power of 2 2 .

We find that the only Pythagorean triplet satisfying this condition is ( 15 , 8 , 17 ) (15,8,17) .

Therefore, 2 n 192 = 64 = 2 6 n = 198 2^{n-192}=64=2^{6} \implies n=198 is the only solution.

Same solution

Dev Sharma - 5 years, 7 months ago

Am I right in asking that you have assumed that n > 192 n>192 ?

Adarsh Kumar - 5 years, 7 months ago

Log in to reply

Yes.... I must also show that there is no solution for n < 192 n<192 .

A Former Brilliant Member - 5 years, 7 months ago

Same Solution.

Kushagra Sahni - 5 years, 7 months ago
Krutarth Patel
Nov 13, 2015

Suppose 2 200 31 2 192 + 2 n = m 2 , m Z 2^{200} - 31 \cdot 2^{192 +} 2^{n} = m^{2}, m \in \mathbb{Z} . 2 200 31 2 192 + 2 n = m 2 2 200 ( 2 5 1 ) 2 192 + 2 n = m 2 2 200 2 197 + 2 192 + 2 n = m 2 ( 2 100 ) 2 2 2 100 2 96 + ( 2 96 ) 2 + 2 n = m 2 ( 2 100 2 96 ) 2 + 2 n = m 2 ( ( 2 4 1 ) 2 96 ) 2 + 2 n = m 2 ( 15 2 96 ) 2 + 2 n = m 2 m 2 ( 15 2 96 ) 2 = 2 n ( m 15 2 96 ) ( m + 15 2 96 ) = 2 x 2 y \begin{aligned} 2^{200} - 31 \cdot2^{192} + 2^{n} & = m^2 \\ 2^{200} - (2^{5} - 1)2^{192} + 2^{n} & = m^{2} \\ 2^{200} - 2^{197} + 2^{192} + 2^{n} & = m^{2} \\ (2^{100})^{2} - 2 \cdot 2^{100} \cdot 2^{96} + (2^{96})^{2} + 2^{n} & = m^{2} \\ (2^{100} - 2^{96})^{2} + 2^{n} & = m^{2} \\ ((2^{4} - 1)2^{96})^{2} + 2^{n} & = m^{2} \\ (15 \cdot 2^{96})^{2} + 2^{n} & = m^{2} \\ m^{2} - (15 \cdot 2^{96})^{2} & = 2^{n} \\ (m - 15 \cdot 2^{96})(m + 15 \cdot 2^{96}) & = 2^{x} \cdot 2^{y} \end{aligned} Let ( m 15 2 96 ) = 2 x (m -15 \cdot 2^{96}) = 2^{x} and ( m + 15 2 96 ) = 2 y (m + 15 \cdot 2^{96}) = 2^{y} and x + y = n x + y = n . Now, WLOG x y x \leqslant y . 2 y 2 x = 30 2 96 2 x ( 2 y x 1 ) = 15 2 97 \begin{aligned}2^{y} - 2^{x} & = 30 \cdot 2^{96} \\ 2^{x}(2^{y - x} - 1) & =15 \cdot 2^{97}\end{aligned} Comparing, we get 2 x = 2 97 2 y x 1 = 2 4 1 \begin{aligned} 2^{x} & = 2^{97} \\ 2^{y - x} - 1 & = 2^{4} - 1 \end{aligned} x = 97 , y = x + 4 = 101 , n = x + y = 198 \Rightarrow x = 97, y = x + 4 = 101, n = x + y = \boxed{198}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...