Sum 1 follow-up

Calculus Level 3

This problem is a follow-up to "Sum 1" , my previous problem; if you've read my solution to "Sum 1", this problem should be straightforward.

Evaluate:

n = 1 ( ( 1 ) n n k = 1 n ( ( 1 ) k k ) ) \sum_{n=1}^{\infty} {\left(\frac{\left(-1\right)^n}{n}\sum_{k=1}^n {\left(\frac{\left(-1\right)^k}{k}\right)}\right)}

The answer can be expressed as π a 1 6 a 2 + ( ln a 3 ) a 4 a 5 \dfrac{\pi^{a_1}}{6a_2}+\dfrac{\left(\ln{a_3}\right)^{a_4}}{a_5} , where a 1 a_1 , a 2 a_2 , a 3 a_3 , a 4 a_4 , and a 5 a_5 are prime positive integers; find 10000 a 1 + 1000 a 2 + 100 a 3 + 10 a 4 + a 5 10000a_1+1000a_2+100a_3+10a_4+a_5 .


The answer is 22222.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Jun 24, 2017

write the sum as n = 1 ( 1 ) n n 0 1 x n 1 x 1 d x = 0 1 ln ( 1 + x ) ln ( 2 ) x 1 d x \sum_{n=1}^\infty \dfrac{(-1)^n}{n} \int_0^{-1}\dfrac{x^n-1}{x-1} dx=\int_0^{-1} \dfrac{\ln(1+x)-\ln(2)}{x-1} dx substituting x = 1 2 u x=1-2u we have 1 / 2 1 ln ( 1 u ) u d u = l i 2 ( 1 ) l i 2 ( 1 / 2 ) = π 2 12 + ln 2 ( 2 ) 2 \int_{1/2}^1 \dfrac{-\ln(1-u)}{u} du=li_2(1)-li_2(1/2)= \dfrac{\pi^2}{12}+\dfrac{\ln^2(2)}{2}

Nice. In fact, it has been pointed out to me that there is an easy way to solve this without dilogarithm. By switching the order of summation and then switching the letters back: S = n = 1 ( ( 1 ) n n k = 1 n ( ( 1 ) k k ) ) = n = 1 ( ( 1 ) n n k = n ( ( 1 ) k k ) ) S=\sum_{n=1}^{\infty} {\left(\frac{{\left(-1\right)}^n}{n}\sum_{k=1}^n {\left(\frac{{\left(-1\right)}^k}{k}\right)}\right)} = \sum_{n=1}^{\infty} {\left(\frac{{\left(-1\right)}^n}{n}\sum_{k=n}^{\infty} {\left(\frac{{\left(-1\right)}^k}{k}\right)}\right)} Then just add them together! 2 S = n = 1 ( ( 1 ) n n ( k = 1 ( ( 1 ) k k ) + ( 1 ) n n ) ) = n = 1 ( ( ( 1 ) n n ) 2 ) + ( n = 1 ( ( 1 ) n n ) ) 2 2S=\sum_{n=1}^{\infty} {\left(\frac{{\left(-1\right)}^n}{n}\left(\sum_{k=1}^{\infty} {\left(\frac{{\left(-1\right)}^k}{k}\right)}+\frac{{\left(-1\right)}^n}{n}\right)\right)}=\sum_{n=1}^{\infty} {\left({\left(\frac{{\left(-1\right)}^n}{n}\right)}^2\right)} + {\left(\sum_{n=1}^{\infty} {\left(\frac{{\left(-1\right)}^n}{n}\right)}\right)}^2 so 2 S = π 2 6 + ln 2 2 S = π 2 12 + ln 2 2 2 2S=\dfrac{{\pi}^2}{6}+\ln^2{2}\to S=\boxed{\dfrac{{\pi}^2}{12}+\dfrac{\ln^2{2}}{2}} .

Anton Wu - 3 years, 11 months ago

Log in to reply

that is indeed a simpler solution!

Aareyan Manzoor - 3 years, 11 months ago
Anton Wu
Jun 13, 2017

Define the function F ( x ) F(x) : F ( x ) : = n = 1 ( 1 n k = 1 n ( ( 1 ) k k ) ( x 1 ) n ) F(x):=\sum_{n=1}^\infty {\left(\frac{1}{n} \sum_{k=1}^n {\left(\frac{\left(-1\right)^k}{k}\right)} {\left(x-1\right)}^n\right)} Note that F ( 1 ) = 0 F(1)=0 and F ( 0 ) F(0) is the answer to the problem.

Taking the derivative, we have: F ( x ) = n = 0 ( k = 1 n + 1 ( ( 1 ) k k ) ( x 1 ) n ) F'(x)=\sum_{n=0}^\infty {\left(\sum_{k=1}^{n+1} {\left(\frac{\left(-1\right)^k}{k}\right)} {\left(x-1\right)}^n\right)} and through a very similar series of steps to that in my solution to "Sum 1" , we can simplify the above expression to: F ( x ) = ln x ( x 1 ) ( x 2 ) F'(x)=\frac{\ln{x}}{\left(x-1\right)\left(x-2\right)} Thus (since F ( 1 ) = 0 F(1)=0 ): F ( x ) = F ( 1 ) + 1 x ( ln t ( t 1 ) ( t 2 ) d t ) = 1 x ( ln t ( t 1 ) ( t 2 ) d t ) F(x)=F(1)+\int_1^x {\left(\frac{\ln{t}}{\left(t-1\right)\left(t-2\right)}\,dt\right)}=\int_1^x {\left(\frac{\ln{t}}{\left(t-1\right)\left(t-2\right)}\,dt\right)} and the answer to the problem is F ( 0 ) F(0) : F ( 0 ) = 1 0 ( ln t ( t 1 ) ( t 2 ) d t ) = 0 1 ( ln t ( t 1 ) ( t 2 ) d t ) F(0)=\int_1^0 {\left(\frac{\ln{t}}{\left(t-1\right)\left(t-2\right)}\,dt\right)}=-\int_0^1 {\left(\frac{\ln{t}}{\left(t-1\right)\left(t-2\right)}\,dt\right)} In the solution to the original problem, I alluded to the possibility of solving it using the dilogarithm function ; here, the dilogarithm function is necessary: 0 1 ( ln t ( t 1 ) ( t 2 ) d t ) = dilog ( 1 2 ) π 2 6 \int_0^1 {\left(\frac{\ln{t}}{\left(t-1\right)\left(t-2\right)}\,dt\right)}=\textrm{dilog}\left(\frac{1}{2}\right)-\frac{\pi^2}{6} However, dilog ( 1 2 ) \textrm{dilog}\left(\dfrac{1}{2}\right) is a special value of the dilogarithm function: dilog ( 1 2 ) = π 2 12 ln 2 2 2 \textrm{dilog}\left(\frac{1}{2}\right)=\frac{\pi^2}{12}-\frac{\ln^2{2}}{2} In summary, we have shown that: n = 1 ( ( 1 ) n n k = 1 n ( ( 1 ) k k ) ) = F ( 0 ) = 0 1 ( ln t ( t 1 ) ( t 2 ) d t ) = ( dilog ( 1 2 ) π 2 6 ) = ( ( π 2 12 ln 2 2 2 ) π 2 6 ) = π 2 12 + ln 2 2 2 \begin{aligned} \sum_{n=1}^{\infty} {\left(\frac{\left(-1\right)^n}{n}\sum_{k=1}^n {\left(\frac{\left(-1\right)^k}{k}\right)}\right)} &=F(0) \\ &=-\int_0^1 {\left(\frac{\ln{t}}{\left(t-1\right)\left(t-2\right)}\,dt\right)} \\ &=-\left(\textrm{dilog}\left(\frac{1}{2}\right)-\frac{\pi^2}{6}\right) \\ &=-\left(\left(\frac{\pi^2}{12}-\frac{\ln^2{2}}{2}\right)-\frac{\pi^2}{6}\right) \\ &=\boxed{\dfrac{\pi^2}{12}+\dfrac{\ln^2{2}}{2}} \end{aligned} and the answer is 10000 2 + 1000 2 + 100 2 + 10 2 + 2 = 22222 10000\cdot2+1000\cdot2+100\cdot2+10\cdot2+2=22222 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...