Sum!

Algebra Level 4

Let z = 1 2 + i 3 2 z = \dfrac12 + i \dfrac{\sqrt3}2 , calculate k = 1 11 z k \displaystyle \sum_{k=1}^{11} z^k .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Feb 12, 2016

z = e i π 3 \Large z=e^{\small{\frac{i\pi}{3}}} Let G \mathcal{G} denote the given expression. G = k = 1 11 ( z k ) = k = 1 11 e k i π 3 \Large\Rightarrow \mathcal{G} =\sum_{k=1}^{11}({z}^{k})= \sum_{k=1}^{11} e^{\small{\frac{k i\pi}{3}}} (GP) \color{#456461}{\text{(GP)}} = e i π 3 ( e 11 i π 3 1 e i π 3 1 ) \Large =e^{\small{\frac{ i\pi}{3}}}(\dfrac{e^{\small{\frac{11 i\pi}{3}}}-1}{e^{\small{\frac{ i\pi}{3}}}-1}) = e 12 i π 3 e i π 3 e i π 3 1 \Large =\dfrac{e^{\small{\frac{12 i\pi}{3}}}-e^{\small{\frac{ i\pi}{3}}}}{e^{\small{\frac{ i\pi}{3}}}-1} = 1 \huge =-1 G = -1 \huge\therefore \mathcal{G}=\color{#0C6AC7}{\boxed{\color{#EC7300}{{\boxed{\color{#007fff}{\textbf{-1}}}}}}}

Or just note that z = ω 2 z=-\omega^2 where ω \omega is complex cube root of unity. Since 11 2 ( m o d 3 ) 11\equiv 2\pmod{3} , we have S = ω + ω 2 = 1 S=\omega+\omega^2=\boxed{-1} .

Nihar Mahajan - 5 years, 4 months ago
Mateus Gomes
Feb 12, 2016

z = e ( i π 3 ) \large z=e^{(\frac{i\pi}{3})} k = 1 11 ( z k ) = z 1 + z 2 + z 3 + . . . + z 11 ( G P ) \sum_{k=1}^{11}({z}^{k})=z^{1}+z^{2}+z^{3}+...+z^{11}~~(\color{#D61F06}{GP}) z 1 + z 2 + z 3 + . . . + z 11 = ( z 12 z z 1 ) = z^{1}+z^{2}+z^{3}+...+z^{11}=(\frac{z^{12}-z}{z-1})= = ( e ( i 4 π ) e ( i π 3 ) e ( i π 3 ) 1 ) = 1 e ( i π 3 ) e ( i π 3 ) 1 ) = =(\frac{e^{(i4\pi)}-e^{(\frac{i\pi}{3})}}{e^{(\frac{i\pi}{3})}-1})=\frac{1-e^{(\frac{i\pi}{3})}}{e^{(\frac{i\pi}{3})}-1})= 1 \Large\color{#3D99F6}{\boxed{\color{forestgreen}{\boxed{-1}}}}

z = e i π 3 z = e^{\frac{i\pi}{3}} is a 6th primitive root of the unity. I mean z 6 = 1 and z 5 + z 4 + z 3 + z 2 + z + 1 = 0 z^6 =1 \text{ and } z^5 + z^4 + z^3 + z^2 + z + 1 = 0 \Rightarrow k = 1 11 z k = z + z 2 + z 3 + z 4 + z 5 + z 6 ( 1 + z + z 2 + z 3 + z 4 + z 5 ) = \sum_{k=1}^{11} z^k = z + z^2 + z^3 + z^4 + z^5 + z^6(1 + z + z^2 + z^3 + z^4 + z^5) = = z + z 2 + z 3 + z 4 + z 5 = 1 = z + z^2 + z^3 + z^4 + z^5 = -1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...