An algebra problem by anshu garg

Algebra Level 3

Find the sum of first 10 terms of the sequence

{ 7 , 77 , 777 , 7777 , , 7777777777 } \{7, 77,777,7777, \ldots, 7777777777 \}


The answer is 8641975300.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 23, 2016

S = 7 + 77 + 777 + . . . + 7777777777 = 7 ( 1 1 + 1 1 2 + 11 1 3 + . . . + 111111111 1 10 ) = n = 0 9 7 ( 10 n ) 1 0 n + 1 = 7 n = 0 9 ( 1 0 n + 2 n 1 0 n + 1 ) = 700 n = 0 9 1 0 n 70 n = 1 9 n 1 0 n See note. = 700 1 0 10 1 10 1 70 9876543210 = 700 1 , 111 , 111 , 111 691 , 358 , 024 , 700 = 777 , 777 , 777 , 700 691 , 358 , 024 , 700 = 86 , 419 , 753 , 000 \begin{aligned} S & = 7+77+777+...+7777777777 \\ & = 7({\color{#3D99F6}\underbrace{1}_1} + 1{\color{#3D99F6}\underbrace{1}_2}+11 {\color{#3D99F6}\underbrace{1}_3}+...+111111111 {\color{#3D99F6}\underbrace{1}_{10}}) \\ & = \sum_{n=0}^9 7(10-n)10^{n+1} \\ & = 7 \sum_{n=0}^9 \left(10^{n+2}-n10^{n+1} \right) \\ & = 700 \sum_{n=0}^9 10^n - 70 \color{#3D99F6} \sum_{n=1}^9 n10^n & \small \color{#3D99F6} \text{See note.} \\ & = 700 \cdot \frac {10^{10}-1}{10-1} - 70\cdot \color{#3D99F6} 9876543210 \\ & = 700 \cdot 1,111,111,111 - 691,358,024,700 \\ & = 777,777,777,700 - 691,358,024,700 \\ & = \boxed{86,419,753,000} \end{aligned}


Note:

S 1 = n = 1 9 n 1 0 n = 10 + 2 ( 1 0 2 ) + 3 ( 1 0 3 ) + . . . + 9 ( 1 0 9 ) 10 S 1 = 1 0 2 + 2 ( 1 0 3 ) + 3 ( 1 0 4 ) + . . . + 9 ( 1 0 10 ) ( 1 10 ) S 1 = 10 + 1 0 2 + 1 0 3 + . . . + 1 0 9 9 ( 1 0 10 ) 9 S 1 = 10 1 0 9 1 10 1 9 ( 1 0 10 ) = 1 0 10 10 81 ( 1 0 10 ) 9 S 1 = 8 × 1 0 11 10 81 = 9876543210 \begin{aligned} S_1 & = \sum_{n=1}^9 n10^n \\ & = 10+2(10^2) + 3(10^3)+...+9(10^9) \\ 10S_1 & = 10^2+2(10^3) + 3(10^4)+...+9(10^{10}) \\ (1-10)S_1 & = 10 + 10^2+10^3 + ... + 10^9 - 9(10^{10}) \\ -9S_1 & = 10 \cdot \frac {10^9-1}{10-1} - 9(10^{10}) \\ & = \frac {10^{10}-10-81(10^{10})}9 \\ \implies S_1 & = \frac {8\times 10^{11}-10}{81} = 9876543210 \end{aligned}

Please make the first step more clear

anshu garg - 4 years, 6 months ago

Log in to reply

Thanks. I hope the above helps.

Chew-Seong Cheong - 4 years, 6 months ago
Tina Sobo
Nov 27, 2016

Divide each term by 7, the terms are then: 1, 11, 111.... 1,111,111,111). The first 9 terms will add up to 123456789 (since 9 of the terms have a 1's digit, 8 a ten's digit, etc.). The last term is merely 10 1's. Add those two numbers and you get 1234567900. Multiply by 7 (that we initially divided the terms by) to get 8641975300.

Anshu Garg
Nov 24, 2016

7(1+11+111.................................................1111111111)

7 9 \frac{7}{9} (9)(1+11+111+1111..............................................10 terms)

7 9 \frac{7}{9} (9+99+999+9999..............................10 terms)

7 9 \frac{7}{9} ([10-1]+[100-1]+[1000-1]................................10 terms)

Now Applying G.P. Formula and simplifying

=86419753000

YEs,,, but see i also did the same way.. i needed Calculator for evaluating the GP.

Md Zuhair - 4 years, 6 months ago

It took alot of time and I also makes mistakes.

ankit raj - 4 years, 6 months ago

Bus Kuch kar raha huin

ankit raj - 4 years, 6 months ago

Easy ques with lengthy calculations

Lakshay Rana - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...