Sum

Calculus Level 3

n = 0 ( 1 ) n ( ( π 3 ) 2 n + ( π 6 ) 2 n ) ( 2 n ) ! = a + b c \large \sum_{n=0}^\infty \frac{ (-1)^n \left( \left( \frac \pi3\right)^{2n} + \left( \frac \pi6\right)^{2n} \right) }{(2n)!} = \dfrac{a + \sqrt b}c

The equation above holds true for positive integers a , b a,b and c c with b b square-free. Find a + b + c a+b+c .


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 11, 2017

Note that the Maclaurin series of cos = n = 0 ( 1 ) n x 2 n ( 2 n ) ! \cos = \displaystyle \sum_{n=0}^\infty \frac {(-1)^n x^{2n}}{(2n)!} . Therefore,

S = n = 0 ( 1 ) n ( ( π 3 ) 2 n + ( π 6 ) 2 n ) ( 2 n ) ! = n = 0 ( 1 ) n ( π 3 ) 2 n ( 2 n ) ! + n = 0 ( 1 ) n ( π 6 ) 2 n ( 2 n ) ! = cos π 3 + cos π 6 = 1 2 + 3 2 = 1 + 3 2 \begin{aligned} S & = \sum_{n=0}^\infty \frac {(-1)^n \left(\left(\frac \pi 3\right)^{2n} +\left(\frac \pi 6\right)^{2n} \right)}{(2n)!} \\ & = \sum_{n=0}^\infty \frac {(-1)^n \left(\frac \pi 3\right)^{2n}}{(2n)!} + \sum_{n=0}^\infty \frac {(-1)^n \left(\frac \pi 6\right)^{2n}}{(2n)!} \\ & = \cos \frac \pi 3 + \cos \frac \pi 6 = \frac 12 + \frac {\sqrt 3} 2 = \frac {1+\sqrt 3}2 \end{aligned}

a + b + c = 1 + 3 + 2 = 6 \implies a + b + c = 1+3+2 = \boxed{6}

e i a e^{ia} = 1 + i a ia - a 2 2 ! \frac{a^2}{2!} - i a 3 3 ! \frac{ia^3}{3!} + a 4 4 ! \frac{a^4}{4!} + ... , (equation 1)

Where i 2 i^2 = 1 -1 ,

Now consider,

e i a e^{-ia} = 1 - i a ia - a 2 2 ! \frac{a^2}{2!} + i a 3 3 ! \frac{ia^3}{3!} + a 4 4 ! \frac{a^4}{4!} - ... , (equation 2) ,

Now add (equation 1) and (equation 2) ,

e i a e^{ia} + e i a e^{-ia} = 2{1 - a 2 2 ! \frac{a^2}{2!} + a 4 4 ! \frac{a^4}{4!} -...} = 2 c o s a cosa ,

Or directly, using maclaurin series , cosa = {1 - a 2 2 ! \frac{a^2}{2!} + a 4 4 ! \frac{a^4}{4!} -...} ,

n = 0 ( 1 ) n ( ( π 3 ) 2 n + ( π 6 ) 2 n ) ( 2 n ) ! \large \sum_{n=0}^\infty \dfrac{ (-1)^n \left( \left( \frac \pi3\right)^{2n} + \left( \frac \pi6\right)^{2n} \right) }{(2n)!} = cos (60°) + cos(30°) ,

So answer is cos(60°) + cos(30°) = 1 + 3 2 \frac{1+✓3}{2}

a a = 1 , b b = 3 , c c = 2,

a + b + c a+b+c = 6 6 .

cos ( 60 ° ) + cos ( 30 ° ) = cos ( 90 ° ) = 0 \cos ( 60 \degree ) + \cos ( 30 \degree ) = \cos ( 90 \degree ) = 0 .

. . - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...