Sum 2

Let the sequence { a n } \left\{a_n\right\} be defined as:

a n : = ( 1 ) n + 1 k = 0 n ( ( 2 n + 1 2 k ) 2 k ) a_n:=\left(-1\right)^{n+1}\sum_{k=0}^n {\left(\binom{2n+1}{2k}2^k\right)}

Evaluate:

n = 1 ( 1 1 + a n ) \sum_{n=1}^{\infty} \left(\frac{1}{1+a_n}\right)

If the answer is defined as S S , find 1 S ( 2 S + 1 ) \dfrac{1}{S\left(2S+1\right)} .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anton Wu
Jun 14, 2017

We rewrite ( 1 + a n ) \left(1+a_n\right) :

1 + a n = 1 + ( 1 ) n + 1 k = 0 n ( ( 2 n + 1 2 k ) 2 k ) = 1 + ( 1 ) n + 1 k = 0 n ( ( 2 n + 1 2 k ) ( 2 ) 2 k ) = 1 + ( 1 ) n + 1 2 k = 0 n ( ( 2 n + 1 2 k ) ( ( 2 ) 2 k + ( 2 ) 2 k ) ) = 1 + ( 1 ) n + 1 2 k = 0 2 n + 1 ( ( 2 n + 1 k ) ( ( 2 ) k + ( 2 ) k ) ) = 1 + ( 1 ) n + 1 2 ( k = 0 2 n + 1 ( ( 2 n + 1 k ) ( 2 ) k ) + k = 0 2 n + 1 ( ( 2 n + 1 k ) ( 2 ) k ) ) = 1 + ( 1 ) n + 1 2 ( ( 1 + 2 ) 2 n + 1 + ( 1 2 ) 2 n + 1 ) = ( 1 ) n + 1 2 ( ( 1 + 2 ) 2 n + 1 + ( 1 2 ) 2 n + 1 + 2 ( 1 ) n + 1 ) = ( 1 ) n + 1 2 ( ( 1 + 2 ) n ( 1 2 ) n ) ( ( 1 + 2 ) n + 1 ( 1 2 ) n + 1 ) = 4 ( 1 ) n + 1 ( 1 2 2 ( ( 1 + 2 ) n ( 1 2 ) n ) ) ( 1 2 2 ( ( 1 + 2 ) n + 1 ( 1 2 ) n + 1 ) ) \begin{aligned} 1+a_n &=1+\left(-1\right)^{n+1}\sum_{k=0}^n {\left(\binom{2n+1}{2k}2^k\right)} \\ &=1+\left(-1\right)^{n+1}\sum_{k=0}^n {\left(\binom{2n+1}{2k}\left(\sqrt{2}\right)^{2k}\right)} \\ &=1+\frac{\left(-1\right)^{n+1}}{2}\sum_{k=0}^n {\left(\binom{2n+1}{2k}\left(\left(\sqrt{2}\right)^{2k}+\left(-\sqrt{2}\right)^{2k}\right)\right)} \\ &=1+\frac{\left(-1\right)^{n+1}}{2}\sum_{k=0}^{2n+1} {\left(\binom{2n+1}{k}\left(\left(\sqrt{2}\right)^{k}+\left(-\sqrt{2}\right)^{k}\right)\right)} \\ &=1+\frac{\left(-1\right)^{n+1}}{2}\left(\sum_{k=0}^{2n+1} {\left(\binom{2n+1}{k}\left(\sqrt{2}\right)^{k}\right)}+\sum_{k=0}^{2n+1} {\left(\binom{2n+1}{k}\left(-\sqrt{2}\right)^{k}\right)}\right) \\ &=1+\frac{\left(-1\right)^{n+1}}{2}\left({\left(1+\sqrt{2}\right)}^{2n+1}+{\left(1-\sqrt{2}\right)}^{2n+1}\right) \\ &=\frac{\left(-1\right)^{n+1}}{2}\left({\left(1+\sqrt{2}\right)}^{2n+1}+{\left(1-\sqrt{2}\right)}^{2n+1}+2{\left(-1\right)}^{n+1}\right) \\ &=\frac{\left(-1\right)^{n+1}}{2}\left({\left(1+\sqrt{2}\right)}^n-{\left(1-\sqrt{2}\right)}^n\right)\left({\left(1+\sqrt{2}\right)}^{n+1}-{\left(1-\sqrt{2}\right)}^{n+1}\right) \\ &=4\left(-1\right)^{n+1}\left(\frac{1}{2\sqrt{2}}\left({\left(1+\sqrt{2}\right)}^n-{\left(1-\sqrt{2}\right)}^n\right)\right)\left(\frac{1}{2\sqrt{2}}\left({\left(1+\sqrt{2}\right)}^{n+1}-{\left(1-\sqrt{2}\right)}^{n+1}\right)\right) \end{aligned}

So if we define { b n } \left\{b_n\right\} as:

b n : = 1 2 2 ( ( 1 + 2 ) n ( 1 2 ) n ) b_n:=\frac{1}{2\sqrt{2}}\left({\left(1+\sqrt{2}\right)}^n-{\left(1-\sqrt{2}\right)}^n\right)

then, ( 1 + a n ) = 4 ( 1 ) n + 1 b n b n + 1 \left(1+a_n\right)=4\left(-1\right)^{n+1}b_n b_{n+1} , and the desired sum is:

S = n = 1 ( 1 1 + a n ) = n = 1 ( 1 4 ( 1 ) n + 1 b n b n + 1 ) = 1 4 n = 1 ( ( 1 ) n + 1 b n b n + 1 ) \begin{aligned} S &=\sum_{n=1}^{\infty} \left(\frac{1}{1+a_n}\right) \\ &=\sum_{n=1}^{\infty} \left(\frac{1}{4\left(-1\right)^{n+1}b_n b_{n+1}}\right) \\ &=\frac{1}{4}\sum_{n=1}^{\infty} \left(\frac{{\left(-1\right)}^{n+1}}{b_n b_{n+1}}\right) \end{aligned}

For the sequence { b n } \left\{b_n\right\} , since r = 1 ± 2 r=1\pm\sqrt{2} satisfies the characteristic equation r 2 = 2 r + 1 r^2=2r+1 , we have the recurrence:

b n = 2 b n 1 + b n 2 b_n=2b_{n-1}+b_{n-2}

so the sequence begins 1 1 , 2 2 , 5 5 , 12 12 , 29 29 , 70 70 , 169 169 , 408 408 , . . . ... , which we recognize as denominators of fractions that converge to 2 \sqrt{2} . with the sequence of respective numerators { c n } \left\{c_n\right\} beginning 1 1 , 3 3 , 7 7 , 17 17 , 41 41 , 99 99 , 239 239 , 577 577 , . . . ... , which in fact satisfies the same recurrence.

Since the continued fraction expansion of 2 \sqrt{2} is [ 1 ; 2 , 2 , 2 , 2 , 2 , . . . ] \left[1;2,2,2,2,2,...\right] , the fractions referred to above are the continued fraction convergents to 2 \sqrt{2} , and we therefore have the theorem that b n + 1 c n b n c n + 1 = ( 1 ) n b_{n+1}c_n-b_n c_{n+1}=\left(-1\right)^n . Thus:

S = 1 4 n = 1 ( ( 1 ) n + 1 b n b n + 1 ) = 1 4 n = 1 ( b n + 1 c n b n c n + 1 b n b n + 1 ) = 1 4 n = 1 ( c n b n c n + 1 b n + 1 ) = 1 4 ( c 1 b 1 c b ) = 1 4 ( c b c 1 b 1 ) = 1 4 ( 2 1 ) \begin{aligned} S &=\frac{1}{4}\sum_{n=1}^{\infty} \left(\frac{{\left(-1\right)}^{n+1}}{b_n b_{n+1}}\right) =-\frac{1}{4}\sum_{n=1}^{\infty} \left(\frac{b_{n+1}c_n-b_n c_{n+1}}{b_n b_{n+1}}\right) =-\frac{1}{4}\sum_{n=1}^{\infty} \left(\frac{c_n}{b_n}-\frac{c_{n+1}}{b_{n+1}}\right) =-\frac{1}{4}\left(\frac{c_1}{b_1}-\frac{c_{\infty}}{b_{\infty}}\right) =\frac{1}{4}\left(\frac{c_{\infty}}{b_{\infty}}-\frac{c_1}{b_1}\right) \\ &=\boxed{\dfrac{1}{4}\left(\sqrt{2}-1\right)} \end{aligned}

Notice that 4 S + 1 = 2 4S+1=\sqrt{2} , and squaring both sides and simplifying yields:

16 S 2 + 8 S + 1 = 2 16 S 2 + 8 S = 1 8 S ( 2 S + 1 ) = 1 S ( 2 S + 1 ) = 1 8 1 S ( 2 S + 1 ) = 8 \begin{aligned} 16S^2+8S+1&=2 \\ \\ 16S^2+8S&=1 \\ \\ 8S\left(2S+1\right)&=1 \\ \\ S\left(2S+1\right)&=\frac{1}{8} \\ \\ \frac{1}{S\left(2S+1\right)}&=\boxed{8} \end{aligned}

and the answer is 8 8 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...