Sum

Calculus Level 5

Calculate k = 0 1 ( 3 k + 1 ) ( 3 k + 2 ) ( 3 k + 3 ) \displaystyle \sum_{k=0}^{\infty} \dfrac{1}{(3k + 1)(3k + 2)(3k + 3)} .

π 3 3 ln ( 3 ) 12 \frac{\pi\sqrt{3} - 3\ln(3)}{12} π ( 3 3 ln ( 3 ) ) 12 \frac{\pi(\sqrt{3} - 3\ln(3))}{12} π 3 ln ( 3 ) 12 \frac{\pi\sqrt{3} - \ln(3)}{12} π ( 3 ln ( 3 ) ) 12 \frac{\pi(\sqrt{3} - \ln(3))}{12}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = k = 0 1 ( 3 k + 1 ) ( 3 k + 2 ) ( 3 k + 3 ) By partial fraction decomposition = 1 2 k = 0 ( 1 3 k + 1 2 3 k + 2 + 1 3 k + 3 ) = 1 2 ( 1 1 2 2 + 1 3 + 1 4 2 5 + 1 6 + 1 7 2 8 + 1 9 + ) = ( cos 4 π 3 1 + cos 2 π 2 + cos 8 π 3 3 + cos 10 π 3 4 + ) = k = 1 ω k + 1 k where ω = e 2 π 3 i the 3rd root of unity. = ( ω k = 1 ω k k ) ( ) denotes the real part of a complex number. = ( ω ln ( 1 ω ) ) By Euler’s formula: e θ i = cos θ + i sin θ = ( ω ln ( 1 ( 1 2 + 3 2 i ) ) ) = ( ω ln ( 3 2 3 2 i ) ) = ( ω ln ( 3 e π 6 i ) ) = ( ( 1 2 + 3 2 i ) ( ln 3 2 π 6 i ) ) = π 3 3 ln 3 12 \begin{aligned} S & = \sum_{k=0}^\infty \frac 1{(3k+1)(3k+2)(3k+3)} & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \frac 12 \sum_{k=0}^\infty \left({\color{#3D99F6}\frac 1{3k+1}} - \frac 2{3k+2} + \frac 1{3k+3}\right) \\ & = \frac 12 \left({\color{#3D99F6}\frac 11} - \frac 22 + \frac 13 + {\color{#3D99F6}\frac 14} - \frac 25 + \frac 16 + {\color{#3D99F6}\frac 17} - \frac 28 + \frac 19 + \cdots \right) \\ & = - \left(\frac {\cos \frac {4\pi}3}1 + \frac {\cos 2\pi}2 + \frac {\cos \frac {8\pi}3}3 + \frac {\cos \frac {10\pi}3}4 + \cdots \right) \\ & = - {\color{#D61F06}\Re} \sum_{k=1}^\infty \frac {{\color{#3D99F6}\omega}^{k+1}}k & \small \color{#3D99F6} \text{where }\omega = e^{\frac {2\pi}3i} \text{ the 3rd root of unity.} \\ & = - {\color{#D61F06}\Re} \left( \omega \sum_{k=1}^\infty \frac {\omega^k}k \right) & \small \color{#D61F06} \Re(\cdot) \text{ denotes the real part of a complex number.} \\ & = \Re \left( \omega \ln (1-{\color{#3D99F6}\omega}) \right) & \small \color{#3D99F6} \text{By Euler's formula: }e^{\theta i} = \cos \theta + i\sin \theta \\ & = \Re \left( \omega \ln \left(1-{\color{#3D99F6}\left(-\frac 12+\frac {\sqrt 3}2i \right)}\right) \right) \\ & = \Re \left( \omega \ln \left(\frac 32-\frac {\sqrt 3}2i \right) \right) \\ & = \Re \left( \omega \ln \left(\sqrt 3 e^{-\frac \pi 6i} \right) \right) \\ & = \Re \left(\left(-\frac 12 + \frac {\sqrt 3}2i\right) \left(\frac {\ln 3}2 - \frac \pi 6i \right) \right) \\ & = \boxed{\dfrac {\pi \sqrt 3-3\ln 3}{12}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...