The first 3 terms of a geometric progression is given by 36, 48, 64.
What is the smallest n , such that the sum of the first n terms of this geometric progression is more than 3 times greater than the n th term?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let a be the first term and r be the common ratio
a = 3 6 r = 3 4
3 ( a r n − 1 ) < 1 − r a ( 1 − r n )
3 × 3 6 ( 3 4 ) n − 1 < 1 − 3 4 3 6 ( 1 − 3 4 n )
1 0 8 ( 3 4 ) n − 1 < 3 − 1 3 6 ( 1 − 3 4 n )
1 0 8 ( 3 4 ) n − 1 < − 1 0 8 ( 1 − 3 4 n )
8 1 ( 3 4 ) n < − 1 0 8 ( 1 − 3 4 n )
8 1 ( 3 4 ) n < − 1 0 8 + 1 0 8 ( 3 4 n )
− 2 7 ( 3 4 ) n < − 1 0 8
2 7 ( 3 4 ) n > 1 0 8
( 3 4 ) n > 4
lo g 3 4 ( 3 4 n ) > lo g 3 4 ( 4 )
n > 4 . 8 1 8 8 . .
⟹ n = 5
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Geometric Progression Sum
Let the first term and common ratio of the geometric progression be a = 3 6 and r = 3 4 respectively. Then, we have:
k = 1 ∑ n a r k r − 1 a ( r n − 1 ) r n − 1 r n + 1 − 1 r n − 1 r n − r n − 1 r n ( 1 − r 1 ) r n ( 1 − 4 3 ) r n ( 4 1 ) ( 3 4 ) n n ⟹ n > 3 a r n − 1 > 3 a r n − 1 > 3 r n − 1 ( r − 1 ) > 3 r n − 1 ( 3 4 − 1 ) > r n − 1 > 1 > 1 > 1 > 1 > 4 > lo g 3 4 lo g 4 ≈ 4 . 8 1 9 = 5