Sum 3 times greater than n th n^\text{th} term?

Algebra Level 3

The first 3 terms of a geometric progression is given by 36, 48, 64.

What is the smallest n n , such that the sum of the first n n terms of this geometric progression is more than 3 times greater than the n th n^\text{th} term?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 20, 2017

Relevant wiki: Geometric Progression Sum

Let the first term and common ratio of the geometric progression be a = 36 a = 36 and r = 4 3 r = \frac 43 respectively. Then, we have:

k = 1 n a r k > 3 a r n 1 a ( r n 1 ) r 1 > 3 a r n 1 r n 1 > 3 r n 1 ( r 1 ) r n + 1 1 > 3 r n 1 ( 4 3 1 ) r n 1 > r n 1 r n r n 1 > 1 r n ( 1 1 r ) > 1 r n ( 1 3 4 ) > 1 r n ( 1 4 ) > 1 ( 4 3 ) n > 4 n > log 4 log 4 3 4.819 n = 5 \begin{aligned} \sum_{k=1}^n ar^k & > 3ar^{n-1} \\ \frac {a(r^n-1)}{r-1} & > 3ar^{n-1} \\ r^n-1 & > 3r^{n-1}(r-1) \\ r^{n+1}-1 & > 3r^{n-1}\left(\frac 43-1\right) \\ r^n-1 & > r^{n-1} \\ r^n - r^{n-1} & > 1 \\ r^n \left(1 - \frac 1r\right) & > 1 \\ r^n \left(1 - \frac 34 \right) & > 1 \\ r^n \left(\frac 14 \right) & > 1 \\ \left(\frac 43 \right)^n & > 4 \\ n & > \frac {\log 4}{\log \frac 43} \approx 4.819 \\ \implies n & = \boxed{5} \end{aligned}

Let a a be the first term and r r be the common ratio

a = 36 a=36 r = 4 3 r=\frac { 4 }{ 3 }

3 ( a r n 1 ) < a ( 1 r n ) 1 r 3({ ar }^{ n-1 }) < \frac { a(1-{ r }^{ n }) }{ 1-r }

3 × 36 ( 4 3 ) n 1 < 36 ( 1 4 3 n ) 1 4 3 3{ \times 36(\frac { 4 }{ 3 }) }^{ n-1 }<\frac { 36(1-{ \frac { 4 }{ 3 } }^{ n }) }{ 1-\frac { 4 }{ 3 } } \\

108 ( 4 3 ) n 1 < 36 ( 1 4 3 n ) 1 3 108\left( { \frac { 4 }{ 3 } } \right) ^{ n-1 }<\frac { 36(1-{ \frac { 4 }{ 3 } }^{ n }) }{ \frac { -1 }{ 3 } }

108 ( 4 3 ) n 1 < 108 ( 1 4 3 n ) 108\left( { \frac { 4 }{ 3 } } \right) ^{ n-1 }<-108(1-{ \frac { 4 }{ 3 } }^{ n })

81 ( 4 3 ) n < 108 ( 1 4 3 n ) 81\left( { \frac { 4 }{ 3 } } \right) ^{ n }<-108(1-{ \frac { 4 }{ 3 } }^{ n })

81 ( 4 3 ) n < 108 + 108 ( 4 3 n ) 81\left( { \frac { 4 }{ 3 } } \right) ^{ n }<-108+108\left( { \frac { 4 }{ 3 } }^{ n } \right) \\

27 ( 4 3 ) n < 108 -27\left( { \frac { 4 }{ 3 } } \right) ^{ n }<-108

27 ( 4 3 ) n > 108 27\left( { \frac { 4 }{ 3 } } \right) ^{ n }>108

( 4 3 ) n > 4 \left( { \frac { 4 }{ 3 } } \right) ^{ n }>4\\

log 4 3 ( 4 3 n ) > log 4 3 ( 4 ) \log _{ \frac { 4 }{ 3 } }{ \left( { \frac { 4 }{ 3 } }^{ n } \right) >\log _{ \frac { 4 }{ 3 } }{ \left( 4 \right) } }

n > 4.8188.. n>4.8188..

n = 5 \implies n= \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...