Sum and Product ...

Calculus Level pending

m = 1 ( lim k m n = 1 n 2 k 2 e 2 k 1 n ( 2 k + n + 1 ) n ) = 2 e γ ( b cos ( e γ ) a ) + c sin ( e γ ) \sum _{m=1}^{\infty } \left(\underset{k\to m}{\text{lim}}\prod _{n=1}^{\infty } \frac{n^2-k^2}{e^{\frac{2 k-1}{n}} (-2 k+n+1) n}\right)=2 e^{\gamma } \left(b \cos \left(e^{-\gamma }\right)-a\right)+c \sin \left(e^{-\gamma }\right)

for positive integers a , b , c a,b,c . Submit a + b + c a+b+c .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

HInt: Messing around with the functional equation for the zeta function, I found that

n = 1 2 ( 2 ( 1 n ) n ( 2 n s ) ( 2 n + s ) s 2 n + s + 1 ) e s 1 n = π 2 s π s 1 s e γ ( 1 s ) ζ ( 1 s ) 4 ( 1 s ) ζ ( s ) \prod _{n=1}^{\infty } 2 \left(\frac{2 (1-n) n}{(2 n-s) (2 n+s)}-\frac{s}{2 n+s}+1\right) e^{\frac{s-1}{n}}=\frac{\pi 2^s \pi ^{s-1} s e^{-\gamma (1-s)} \zeta (1-s)}{4 (1-s) \zeta (s)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...