Sum of cosines and product of sines

Geometry Level 3

cos ( 1 2 ) + cos ( 8 4 ) + cos ( 15 6 ) + cos ( 13 2 ) sin ( 6 ) sin ( 4 2 ) sin ( 6 6 ) sin ( 7 8 ) = ? \large{\dfrac{\cos(12^{\circ})+\cos(84^{\circ})+\cos(156^{\circ})+\cos(132^{\circ})}{\sin(6^{\circ}) \sin(42^{\circ}) \sin(66^{\circ}) \sin(78^{\circ})}= \ ? }


The answer is -8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jessica Wang
Jul 16, 2015

We can divide this question into two parts, i.e. the numerator and the denominator.

[ 1 ] . cos 1 2 + cos 8 4 + cos 15 6 + cos 13 2 [1].\: \cos 12^{\circ}+\cos84^{\circ}+\cos156^{\circ}+\cos132^{\circ}

= cos 1 2 cos 2 4 cos 4 8 cos 9 6 =\cos12^{\circ}-\cos24^{\circ}-\cos48^{\circ}-\cos96^{\circ}

= sin 7 8 sin 6 6 sin 4 2 + sin 6 =\sin78^{\circ}-\sin66^{\circ}-\sin42^{\circ}+\sin6^{\circ}

= ( sin 7 8 sin 4 2 ) ( sin 6 6 sin 6 ) =(\sin78^{\circ}-\sin42^{\circ})-(\sin66^{\circ}-\sin6^{\circ})

= 2 cos 6 0 sin 1 8 2 cos 3 6 sin 3 0 =2\cos60^{\circ}\sin18^{\circ}-2\cos36^{\circ}\sin30^{\circ}

= sin 1 8 cos 3 6 =\sin18^{\circ}-\cos36^{\circ}

= sin 1 8 sin 5 4 =\sin18^{\circ}-\sin54^{\circ}

= 2 cos 3 6 sin 1 8 =-2\cos36^{\circ}\sin18^{\circ}

= 2 cos 3 6 sin 1 8 cos 1 8 cos 1 8 =-\frac{2\cos36^{\circ}\sin18^{\circ}\cos18^{\circ}}{\cos18^{\circ}}

= cos 3 6 sin 3 6 cos 1 8 =-\frac{\cos36^{\circ}\sin36^{\circ}}{\cos18^{\circ}}

= 0.5 sin 7 2 cos 1 8 =-\frac{0.5\sin72^{\circ}}{\cos18^{\circ}}

= 0.5 cos 1 8 cos 1 8 =-\frac{0.5\cos18^{\circ}}{\cos18^{\circ}}

= 0.5 =-0.5 ;

[ 2 ] . sin 6 sin 4 2 sin 6 6 sin 7 8 [2].\: \sin6^{\circ}\sin42^{\circ}\sin66^{\circ}\sin78^{\circ}

= sin 6 cos 4 8 cos 2 4 cos 1 2 =\sin6^{\circ}\cos48^{\circ}\cos24^{\circ}\cos12^{\circ}

= 2 cos 6 sin 6 cos 1 2 cos 2 4 cos 4 8 2 cos 6 =\frac{2\cos6^{\circ}\sin6^{\circ}\cos12^{\circ}\cos24^{\circ}\cos48^{\circ}}{2\cos6^{\circ}}

= sin 1 2 cos 1 2 cos 2 4 cos 4 8 2 cos 6 =\frac{\sin12^{\circ}\cos12^{\circ}\cos24^{\circ}\cos48^{\circ}}{2\cos6^{\circ}}

= 2 sin 1 2 cos 1 2 cos 2 4 cos 4 8 4 cos 6 =\frac{2\sin12^{\circ}\cos12^{\circ}\cos24^{\circ}\cos48^{\circ}}{4\cos6^{\circ}}

= sin 2 4 cos 2 4 cos 4 8 4 cos 6 =\frac{\sin24^{\circ}\cos24^{\circ}\cos48^{\circ}}{4\cos6^{\circ}}

= 2 sin 2 4 cos 2 4 cos 4 8 8 cos 6 =\frac{2\sin24^{\circ}\cos24^{\circ}\cos48^{\circ}}{8\cos6^{\circ}}

= sin 4 8 cos 4 8 8 cos 6 =\frac{\sin48^{\circ}\cos48^{\circ}}{8\cos6^{\circ}}

= 2 sin 4 8 cos 4 8 16 cos 6 =\frac{2\sin48^{\circ}\cos48^{\circ}}{16\cos6^{\circ}}

= sin 9 6 16 cos 6 =\frac{\sin96^{\circ}}{16\cos6^{\circ}}

= cos 6 16 cos 6 =\frac{\cos6^{\circ}}{16\cos6^{\circ}}

= 1 16 =\frac{1}{16} .

( 0.5 ) ÷ ( 1 16 ) = 8 . \therefore (-0.5)\div (\frac{1}{16})=\boxed{-8}.

Moderator note:

The denominator has a somewhat recognizable form of doubling the angles, which would suggest such an approach.

What is the form of the numerator that would make use suspect that it is so "factorable"?

@Jessica Wang , you might like my alternative solution. Enjoy!

Pi Han Goh - 5 years, 6 months ago

Log in to reply

Niccceeeeee! Thank you for your information! @Pi Han Goh

Jessica Wang - 5 years, 6 months ago

Cos 132 is same as cos 228 which makes the numerator sum of cosines of angles in AP which can be caculated by
(Sin nd/2 ÷sin d/2 ) * cos ( a + (n - 1)d /2) Where a is first angle n is no. of angles and d is common difference between the two angles.

Shaurya Gomber - 5 years, 5 months ago
Pi Han Goh
Nov 6, 2015

Synopsis : I will compute the values of the numerator and denominator separately.

Numerator: Apply the identity cos ( π n ) + cos ( ( 3 π n ) + cos ( ( 5 π n ) + + cos ( ( n 2 ) π n ) = 1 2 \cos\left( \frac\pi{n} \right) + \cos(\left( \frac{3\pi}n\right) + \cos(\left( \frac{5\pi}n\right) + \ldots + \cos\left( \frac{(n-2)\pi}n\right) = \dfrac12 for positive odd integer n n . See the proof here .

Denominator: Apply the Trigonometric Equations - Triple Angle Formula : 4 sin ( x ) sin ( 6 0 + x ) sin ( 6 0 x ) = sin ( 3 x ) 4\sin(x) \sin(60^\circ+ x) \sin(60^\circ - x) = \sin(3x) .


Numerator:

Note that 12 180 , 84 180 , 156 180 , 132 180 \frac{12}{180}, \frac{84}{180}, \frac{156}{180} ,\frac{132}{180} reduced to the form 1 15 , 7 15 , 13 15 , 11 15 \frac1{15}, \frac{7}{15} ,\frac{13}{15}, \frac{11}{15} . And 1 , 7 , 13 , 11 1,7,13,11 are all positive integers less than 15 that are coprime to 15. This motivates me to use the identity:

cos ( π 15 ) + cos ( 3 π 15 ) + cos ( 5 π 15 ) + cos ( 7 π 15 ) + cos ( 9 π 15 ) + cos ( 11 π 15 ) + cos ( 13 π 15 ) = 1 2 \cos\left( \frac{\pi}{15}\right) + \cos\left( \frac{3\pi}{15}\right) + \cos\left( \frac{5\pi}{15}\right) + \cos\left( \frac{7\pi}{15}\right) + \cos\left( \frac{9\pi}{15}\right) +\cos\left( \frac{11\pi}{15}\right) + \cos\left( \frac{13\pi}{15}\right) = \frac12

Similarly, cos ( π 5 ) + cos ( 3 π 5 ) = 1 2 \cos\left( \frac{\pi}{5}\right) + \cos\left( \frac{3\pi}{5}\right) = \frac12 .

Substituting everything and simplify, the numerator is equal to 1 2 -\dfrac12 .

Denominator:

We apply the identity 4 sin ( x ) sin ( 6 0 + x ) sin ( 6 0 x ) = sin ( 3 x ) 4\sin(x) \sin(60^\circ+ x) \sin(60^\circ - x) = \sin(3x) . Substitute x = 6 x = 6^\circ and x = 1 8 x = 18^\circ , we get

4 sin ( 6 ) sin ( 6 6 ) sin ( 5 4 ) = sin ( 1 8 ) 4 sin ( 1 8 ) sin ( 7 8 ) sin ( 4 2 ) = sin ( 5 4 ) 4\sin(6^\circ) \sin(66^\circ) \sin(54^\circ) = \sin(18^\circ) \\ 4\sin(18^\circ) \sin(78^\circ) \sin(42^\circ) = \sin(54^\circ)

Multiplying both sides and simplify, we obtain the denominator with a value of 1 16 \dfrac1{16} .

Taking their ratio, we get 8 \boxed{-8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...