sin ( 6 ∘ ) sin ( 4 2 ∘ ) sin ( 6 6 ∘ ) sin ( 7 8 ∘ ) cos ( 1 2 ∘ ) + cos ( 8 4 ∘ ) + cos ( 1 5 6 ∘ ) + cos ( 1 3 2 ∘ ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The denominator has a somewhat recognizable form of doubling the angles, which would suggest such an approach.
What is the form of the numerator that would make use suspect that it is so "factorable"?
@Jessica Wang , you might like my alternative solution. Enjoy!
Log in to reply
Niccceeeeee! Thank you for your information! @Pi Han Goh
Cos 132 is same as cos 228 which makes the numerator sum of cosines of angles in AP which can be caculated by
(Sin nd/2 ÷sin d/2 ) * cos ( a + (n - 1)d /2)
Where a is first angle
n is no. of angles and d is common difference between the two angles.
Synopsis : I will compute the values of the numerator and denominator separately.
Numerator: Apply the identity cos ( n π ) + cos ( ( n 3 π ) + cos ( ( n 5 π ) + … + cos ( n ( n − 2 ) π ) = 2 1 for positive odd integer n . See the proof here .
Denominator: Apply the Trigonometric Equations - Triple Angle Formula : 4 sin ( x ) sin ( 6 0 ∘ + x ) sin ( 6 0 ∘ − x ) = sin ( 3 x ) .
Numerator:
Note that 1 8 0 1 2 , 1 8 0 8 4 , 1 8 0 1 5 6 , 1 8 0 1 3 2 reduced to the form 1 5 1 , 1 5 7 , 1 5 1 3 , 1 5 1 1 . And 1 , 7 , 1 3 , 1 1 are all positive integers less than 15 that are coprime to 15. This motivates me to use the identity:
cos ( 1 5 π ) + cos ( 1 5 3 π ) + cos ( 1 5 5 π ) + cos ( 1 5 7 π ) + cos ( 1 5 9 π ) + cos ( 1 5 1 1 π ) + cos ( 1 5 1 3 π ) = 2 1
Similarly, cos ( 5 π ) + cos ( 5 3 π ) = 2 1 .
Substituting everything and simplify, the numerator is equal to − 2 1 .
Denominator:
We apply the identity 4 sin ( x ) sin ( 6 0 ∘ + x ) sin ( 6 0 ∘ − x ) = sin ( 3 x ) . Substitute x = 6 ∘ and x = 1 8 ∘ , we get
4 sin ( 6 ∘ ) sin ( 6 6 ∘ ) sin ( 5 4 ∘ ) = sin ( 1 8 ∘ ) 4 sin ( 1 8 ∘ ) sin ( 7 8 ∘ ) sin ( 4 2 ∘ ) = sin ( 5 4 ∘ )
Multiplying both sides and simplify, we obtain the denominator with a value of 1 6 1 .
Taking their ratio, we get − 8 .
Problem Loading...
Note Loading...
Set Loading...
We can divide this question into two parts, i.e. the numerator and the denominator.
[ 1 ] . cos 1 2 ∘ + cos 8 4 ∘ + cos 1 5 6 ∘ + cos 1 3 2 ∘
= cos 1 2 ∘ − cos 2 4 ∘ − cos 4 8 ∘ − cos 9 6 ∘
= sin 7 8 ∘ − sin 6 6 ∘ − sin 4 2 ∘ + sin 6 ∘
= ( sin 7 8 ∘ − sin 4 2 ∘ ) − ( sin 6 6 ∘ − sin 6 ∘ )
= 2 cos 6 0 ∘ sin 1 8 ∘ − 2 cos 3 6 ∘ sin 3 0 ∘
= sin 1 8 ∘ − cos 3 6 ∘
= sin 1 8 ∘ − sin 5 4 ∘
= − 2 cos 3 6 ∘ sin 1 8 ∘
= − cos 1 8 ∘ 2 cos 3 6 ∘ sin 1 8 ∘ cos 1 8 ∘
= − cos 1 8 ∘ cos 3 6 ∘ sin 3 6 ∘
= − cos 1 8 ∘ 0 . 5 sin 7 2 ∘
= − cos 1 8 ∘ 0 . 5 cos 1 8 ∘
= − 0 . 5 ;
[ 2 ] . sin 6 ∘ sin 4 2 ∘ sin 6 6 ∘ sin 7 8 ∘
= sin 6 ∘ cos 4 8 ∘ cos 2 4 ∘ cos 1 2 ∘
= 2 cos 6 ∘ 2 cos 6 ∘ sin 6 ∘ cos 1 2 ∘ cos 2 4 ∘ cos 4 8 ∘
= 2 cos 6 ∘ sin 1 2 ∘ cos 1 2 ∘ cos 2 4 ∘ cos 4 8 ∘
= 4 cos 6 ∘ 2 sin 1 2 ∘ cos 1 2 ∘ cos 2 4 ∘ cos 4 8 ∘
= 4 cos 6 ∘ sin 2 4 ∘ cos 2 4 ∘ cos 4 8 ∘
= 8 cos 6 ∘ 2 sin 2 4 ∘ cos 2 4 ∘ cos 4 8 ∘
= 8 cos 6 ∘ sin 4 8 ∘ cos 4 8 ∘
= 1 6 cos 6 ∘ 2 sin 4 8 ∘ cos 4 8 ∘
= 1 6 cos 6 ∘ sin 9 6 ∘
= 1 6 cos 6 ∘ cos 6 ∘
= 1 6 1 .
∴ ( − 0 . 5 ) ÷ ( 1 6 1 ) = − 8 .